Given the following sums:
The possible pairs are \( (1,4), (2,3), (3,2) \), leading to:
\[ P(A) = \frac{4}{36}. \]
The possible pairs are \( (2,6), (3,5), (4,4), (5,3), (6,2) \), leading to:
\[ P(B) = \frac{5}{36}. \]
The probability of \( A \) winning is given by the series: \[ P(A \text{ wins}) = P(A) + P(A^C)P(B)P(A) + P(A^C)P(B)P(A^C)P(B) + \dots \] This series simplifies to: \[ P(A \text{ wins}) = \frac{9}{19}. \]
The probability of \( A \) winning is \( \frac{9}{19} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).