Step 1: Understand the decay formula.
The number of nuclei remaining in a radioactive sample after time \( t \) is given by the equation:
\[ N(t) = N_0 \left( \frac{1}{2} \right)^{\frac{t}{T}} \] where: \( N_0 \) is the initial number of nuclei, \( t \) is the time elapsed, \( T \) is the half-life of the substance.
Step 2: Use the given values for A and B.
For sample A, \( T_A = 12 \) hours, For sample B, \( T_B = 16 \) hours, After 48 hours, we calculate the remaining number of nuclei in each sample using the decay formula.
For sample A: \[ N_A(48) = N_{A0} \left( \frac{1}{2} \right)^{\frac{48}{12}} = N_{A0} \left( \frac{1}{2} \right)^4 = N_{A0} \times \frac{1}{16} \] For sample B: \[ N_B(48) = N_{B0} \left( \frac{1}{2} \right)^{\frac{48}{16}} = N_{B0} \left( \frac{1}{2} \right)^3 = N_{B0} \times \frac{1}{8} \]
Step 3: Conclusion.
After 48 hours, the ratio of \( N_A(48) \) to \( N_B(48) \) becomes: \[ \frac{N_A(48)}{N_B(48)} = \frac{N_{A0} \times \frac{1}{16}}{N_{B0} \times \frac{1}{8}} = \frac{1}{2} \] Thus, the ratio of the number of nuclei becomes 1:1.
Conclusion:
The correct answer is (A) 1:1.
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $