The energy lost during redistribution of charge between capacitors is given by:
\[
\text{Energy lost} = \frac{1}{2} \cdot \frac{C \cdot C}{C + C} \cdot (V_1 - V_2)^2,
\]
where \( V_1 = 200 \, \text{V} \) and \( V_2 \) is the final voltage.
For two identical capacitors:
\[
\text{Energy lost} = \frac{1}{2} \cdot \frac{C}{2} \cdot V_1^2.
\]
Substitute \( C = 600 \, \text{pF} = 600 \times 10^{-12} \, \text{F} \) and \( V_1 = 200 \, \text{V} \):
\[
\text{Energy lost} = \frac{1}{2} \cdot \frac{600 \times 10^{-12}}{2} \cdot (200)^2.
\]
Simplify:
\[
\text{Energy lost} = \frac{1}{2} \cdot 300 \times 10^{-12} \cdot 40000 = 6 \times 10^{-6} \, \text{J}.
\]
Convert to microjoules:
\[
\text{Energy lost} = 6 \, \mu \text{J}.
\]
Final Answer:
The energy lost is:
\[
\boxed{6 \, \mu \text{J}}.
\]