\[ R = \frac{\rho \ell}{A} \implies 2 \times 10^{-6} \times \frac{\ell}{10^{-5}} = 1 \implies \ell = 5 \]\[ mg = B I \ell \]\[ B = \frac{mg}{I \ell} = \frac{5}{2 \times 5} = 0.5 = 5 \times 10^{-1} \, \text{Tesla} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: