\[ R = \frac{\rho \ell}{A} \implies 2 \times 10^{-6} \times \frac{\ell}{10^{-5}} = 1 \implies \ell = 5 \]\[ mg = B I \ell \]\[ B = \frac{mg}{I \ell} = \frac{5}{2 \times 5} = 0.5 = 5 \times 10^{-1} \, \text{Tesla} \]
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $