We are given the length of a rod and its angular speed. We need to find the induced emf across the ends of the rod in a magnetic field.
Solution
1. Given Values:
Length of the rod, \( \ell = 20 \, \text{cm} = 0.2 \, \text{m} \)
Angular speed, \( \omega = 210 \, \text{rpm} \)
Magnetic field, \( B = 0.2 \, \text{T} \) (assumed from the calculation)
2. Convert rpm to Radians per Second:
\( \omega = 210 \times \frac{2\pi}{60} = 210 \times \frac{\pi}{30} = 7\pi \, \text{rad/s} \)
Using the approximate value of π as 22/7:
\( \omega = 7 \times \frac{22}{7} = 22 \, \text{rad/s} \)
3. Use the Formula for Induced EMF:
The induced emf is given by:
\( \text{emf} = \frac{1}{2} B \omega \ell^2 \)
4. Substitute the Known Values:
\( \text{emf} = \frac{1}{2} \times 0.2 \times 22 \times (0.2)^2 \)
\( \text{emf} = 0.1 \times 22 \times 0.04 \)
\( \text{emf} = 2.2 \times 0.04 \)
\( \text{emf} = 0.088 \, \text{V} \)
\( \text{emf} = 88 \, \text{mV} \)
Final Answer
Thus, the induced emf is 88 mV.
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.