Let the boy was standing at point S initially. He walked towards the building and reached at point T. It can be observed that
PR = PQ − RQ = (30 − 1.5) m = 28.5 m= 572\frac{57}2 257m
In ∆PAR,
PRAR=tan30°\frac{PR}{ AR} = tan 30°ARPR=tan30°
572AR=13\frac{57}{ 2AR} = \frac{1}{\sqrt3}2AR57=31
AR=(5723)mAR = (\frac{57}{2 \sqrt3})mAR=(2357)m
In ∆PRB,
PRBR=tan60°\frac{PR}{ BR} = tan60°BRPR=tan60°
572BR= 3\frac{57}{ 2BR} = \sqrt 32BR57= 3
BR=5723=(1932) mBR = \frac{57}{2\sqrt3} = (\frac{19\sqrt3}{2})\,mBR=2357=(2193)m
ST = AB = AR- BR = (57/32−1932) m(\frac{57/\sqrt3}{2} - \frac{19\sqrt3}{2} )\,m(257/3−2193)m=(3832) m (\frac{38\sqrt3}2 ) \,m (2383)m = 1193 m19\sqrt3 \,m193m
Hence, he walked 193 m19\sqrt3 \,m193m towards the building.