The relationship between energy \( E \) and momentum \( p \) for electromagnetic radiation can be expressed as:
\[ p = \frac{E}{c}, \]
where:
- \( p \) is the momentum,
- \( E \) is the energy transferred,
- \( c \) is the speed of light (\( c \approx 3 \times 10^8 \, \text{m/s} \)).
Given:
\[ E = 6.48 \times 10^5 \, \text{J}. \]
Substituting the values into the momentum formula:
\[ p = \frac{6.48 \times 10^5 \, \text{J}}{3 \times 10^8 \, \text{m/s}}. \]
Calculating:
\[ p = \frac{6.48}{3} \times 10^{-3} = 2.16 \times 10^{-3} \, \text{kg m/s}. \]
Thus, the magnitude of the total momentum delivered to this surface for complete absorption is:
\[ 2.16 \times 10^{-3} \, \text{kg m/s}. \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where