Reduction Half Reaction:
\[ 2\text{MnO}_4^- \rightarrow 2\text{MnO}_2 \] \[ 2\text{MnO}_4^- + 4\text{H}_2\text{O} + 6e^- \rightarrow 2\text{MnO}_2 + 8\text{OH}^- \]
Oxidation Half Reaction:
\[ 2\text{I}^- \rightarrow \text{I}_2 + 2e^- \] \[ 6\text{I}^- \rightarrow 3\text{I}_2 + 6e^- \]
Adding the oxidation half and reduction half, we get the net reaction as:
\[ 2\text{MnO}_4^- + 6\text{I}^- + 4\text{H}_2\text{O} \rightarrow 3\text{I}_2 + 2\text{MnO}_2 + 8\text{OH}^- \]
Thus, \( z = 8 \).
The problem requires balancing the given redox reaction in a basic or neutral medium and determining the value of the stoichiometric coefficient \( z \) for \( \text{OH}^{-} \).
The balancing of the redox reaction will be performed using the ion-electron method (half-reaction method). This method involves the following steps:
Step 1: Identify and separate the oxidation and reduction half-reactions.
The oxidation state of Mn in \( \text{MnO}_4^{-} \) is +7, and in \( \text{MnO}_2 \) it is +4. This is a reduction.
The oxidation state of I in \( \text{I}^{-} \) is -1, and in \( \text{I}_2 \) it is 0. This is an oxidation.
Reduction half-reaction:
\[ \text{MnO}_4^{-} \rightarrow \text{MnO}_2 \]Oxidation half-reaction:
\[ \text{I}^{-} \rightarrow \text{I}_2 \]Step 2: Balance the atoms in each half-reaction.
For the reduction half-reaction, Mn is already balanced. To balance the four oxygen atoms on the left, we add two water molecules on the right:
\[ \text{MnO}_4^{-} \rightarrow \text{MnO}_2 + 2\text{H}_2\text{O} \]Now, balance the four hydrogen atoms on the right by adding four H⁺ ions on the left:
\[ \text{MnO}_4^{-} + 4\text{H}^{+} \rightarrow \text{MnO}_2 + 2\text{H}_2\text{O} \]For the oxidation half-reaction, balance the iodine atoms:
\[ 2\text{I}^{-} \rightarrow \text{I}_2 \]Step 3: Balance the charges in each half-reaction by adding electrons.
In the reduction half-reaction, the net charge on the left is \( (-1) + 4(+1) = +3 \), and on the right is 0. Add 3 electrons to the left side:
\[ \text{MnO}_4^{-} + 4\text{H}^{+} + 3e^{-} \rightarrow \text{MnO}_2 + 2\text{H}_2\text{O} \]In the oxidation half-reaction, the net charge on the left is -2, and on the right is 0. Add 2 electrons to the right side:
\[ 2\text{I}^{-} \rightarrow \text{I}_2 + 2e^{-} \]Step 4: Equalize the number of electrons in both half-reactions.
To make the number of electrons equal, multiply the reduction half-reaction by 2 and the oxidation half-reaction by 3.
Reduction:
\[ 2(\text{MnO}_4^{-} + 4\text{H}^{+} + 3e^{-} \rightarrow \text{MnO}_2 + 2\text{H}_2\text{O}) \] \[ \Rightarrow 2\text{MnO}_4^{-} + 8\text{H}^{+} + 6e^{-} \rightarrow 2\text{MnO}_2 + 4\text{H}_2\text{O} \]Oxidation:
\[ 3(2\text{I}^{-} \rightarrow \text{I}_2 + 2e^{-}) \] \[ \Rightarrow 6\text{I}^{-} \rightarrow 3\text{I}_2 + 6e^{-} \]Step 5: Add the two half-reactions and cancel the electrons.
\[ 2\text{MnO}_4^{-} + 8\text{H}^{+} + 6\text{I}^{-} \rightarrow 2\text{MnO}_2 + 4\text{H}_2\text{O} + 3\text{I}_2 \]This is the balanced equation in an acidic medium.
Step 6: Convert the equation to a basic medium.
Since the original equation produces \( \text{OH}^{-} \), we must convert this equation to a basic medium. To neutralize the \( 8\text{H}^{+} \) ions, add \( 8\text{OH}^{-} \) ions to both sides of the equation.
\[ 2\text{MnO}_4^{-} + 8\text{H}^{+} + 8\text{OH}^{-} + 6\text{I}^{-} \rightarrow 2\text{MnO}_2 + 4\text{H}_2\text{O} + 3\text{I}_2 + 8\text{OH}^{-} \]Combine \( \text{H}^{+} \) and \( \text{OH}^{-} \) to form water:
\[ 2\text{MnO}_4^{-} + 8\text{H}_2\text{O} + 6\text{I}^{-} \rightarrow 2\text{MnO}_2 + 4\text{H}_2\text{O} + 3\text{I}_2 + 8\text{OH}^{-} \]Cancel the common \( \text{H}_2\text{O} \) molecules from both sides (subtract 4\( \text{H}_2\text{O} \) from each side):
\[ 2\text{MnO}_4^{-} + 4\text{H}_2\text{O} + 6\text{I}^{-} \rightarrow 2\text{MnO}_2 + 3\text{I}_2 + 8\text{OH}^{-} \]The final balanced equation is:
\[ 2\text{MnO}_4^{-} + 6\text{I}^{-} + 4\text{H}_2\text{O} \rightarrow 3\text{I}_2 + 2\text{MnO}_2 + 8\text{OH}^{-} \]Comparing this with the given equation format:
\[ 2 \text{MnO}_4^{-} + b \text{I}^{-} + c \text{H}_2\text{O} \rightarrow x \text{I}_2 + y \text{MnO}_2 + z \text{OH}^{-} \]We can determine the coefficients: \( b=6, c=4, x=3, y=2, \) and \( z=8 \).
The value of \( z \) is 8.
Given below are two statements:
Statement (I): The first ionization energy of Pb is greater than that of Sn.
Statement (II): The first ionization energy of Ge is greater than that of Si.
In light of the above statements, choose the correct answer from the options given below:
The product (A) formed in the following reaction sequence is:

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
