Step 1: Understanding the Concept
This question involves simplifying a trigonometric product of sine and cosine functions.
To solve it, we apply standard trigonometric identities such as product-to-sum and
known trigonometric ratios of special angles like $18^\circ, 36^\circ,$ and $72^\circ$.
The goal is to reduce the given product into a single trigonometric term that can
be simplified further using known values.
Step 2: Key Formula or Approach
The key identities used are:
$2\sin A \cos B = \sin(A+B) + \sin(A-B)$
$2\sin A \sin B = \cos(A-B) - \cos(A+B)$
$\sin(90^\circ - x) = \cos x$
$\sin 18^\circ = \dfrac{\sqrt{5}-1}{4}$ and $\cos 36^\circ = \dfrac{\sqrt{5}+1}{4}$
These formulas will help in expressing the given product as a sum or difference of trigonometric functions,
which can then be simplified using known standard values.
Step 3: Detailed Explanation
We start with:
\[
E = 16 \sin 12^\circ \cos 18^\circ \sin 48^\circ
\]
Group and simplify:
\[
E = 8\cos 18^\circ \times (2\sin 12^\circ \sin 48^\circ)
\]
Now, applying $2\sin A \sin B = \cos(A-B) - \cos(A+B)$:
\[
E = 8\cos18^\circ[\cos(48^\circ - 12^\circ) - \cos(48^\circ + 12^\circ)]
\]
\[
E = 8\cos18^\circ(\cos36^\circ - \cos60^\circ)
\]
Substituting known values:
\[
\cos 60^\circ = \frac{1}{2}, \quad \cos 36^\circ = \frac{\sqrt{5}+1}{4}
\]
Thus,
\[
E = 8\cos18^\circ\left(\frac{\sqrt{5}+1}{4} - \frac{1}{2}\right)
\]
Instead of substituting $\cos18^\circ$ immediately, an alternate simplification is more efficient.
We can use the trigonometric identity $\sin(60^\circ - A)\sin A\sin(60^\circ + A) = \frac{1}{4}\sin(3A)$,
which relates a symmetric triple product of sines.
Let $A = 12^\circ$, giving $\sin 12^\circ$, $\sin 48^\circ$, and $\sin 72^\circ = \sin(60^\circ + 12^\circ)$.
Multiplying and dividing by $\sin 72^\circ$, we get:
\[
E = 16 \cos 18^\circ \times \frac{\sin 12^\circ \sin 48^\circ \sin 72^\circ}{\sin 72^\circ}
\]
Using the above identity:
\[
E = 16 \cos 18^\circ \times \frac{\frac{1}{4}\sin 36^\circ}{\sin 72^\circ}
\]
Since $\sin 72^\circ = 2\sin 36^\circ \cos 36^\circ$, we have:
\[
E = 16 \cos 18^\circ \times \frac{\frac{1}{4}\sin 36^\circ}{2\sin 36^\circ \cos 36^\circ} = \frac{2\cos 18^\circ}{\cos 36^\circ}
\]
Now, use $\cos 18^\circ = \sin 72^\circ = 2\sin 36^\circ \cos 36^\circ$, giving:
\[
E = \frac{2(2\sin 36^\circ \cos 36^\circ)}{\cos 36^\circ} = 4\sin 36^\circ
\]
Finally, substituting $\sin 36^\circ = \dfrac{\sqrt{10-2\sqrt{5}}}{4}$, we obtain:
\[
E = 4 \times \frac{\sqrt{10-2\sqrt{5}}}{4} = \sqrt{10-2\sqrt{5}}
\]
Step 4: Final Answer
\[
\boxed{E = \sqrt{10 - 2\sqrt{5}}}
\]
Hence, the correct option is (A).
The answer key’s option (C) $\sqrt{5}-1$ does not match this result,
indicating an error in the provided key.