100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:
Number of letters | 1 - 4 | 4 - 7 | 7 - 10 | 10 - 13 | 13 - 16 | 16 - 19 |
---|---|---|---|---|---|---|
Number of surnames | 6 | 30 | 40 | 16 | 4 | 4 |
Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.
The cumulative frequencies with their respective class intervals are as follows.
Number of letters | Frequency (f\(_i\)) | Cumulative frequency |
---|---|---|
1 - 4 | 6 | 6 |
4 - 7 | 30 | 30 + 6 = 36 |
7 - 10 | 40 | 40 + 36 = 76 |
10 - 13 | 16 | 76 + 16 = 92 |
13 - 16 | 4 | 92 + 4 = 96 |
16 - 19 | 4 | 96 + 4 = 100 |
Total (n) | 100 |
|
Cumulative frequency just greater \(\frac{n}2 ( i.e., \frac{100}2 = 50)\) than is 76, belonging to class interval 7−10.
Median class = 7−10
Lower limit (\(l\)) of median class = 7
Frequency (\(f\)) of median class = 36
Cumulative frequency (\(cf\)) of median class = 40
Class size (\(h\)) = 3
Median = \(l + (\frac{\frac{n}2 - cf}f \times h)\)
Median = \(7 + (\frac{50 - 36}{40} \times 3)\)
Median = 7 + \(\frac{40 \times 3}{40}\)
Median = 8.05
To find the class mark (xi) for each interval, the following relation is used.
Class mark \((x_i)\) = \(\frac {\text{Upper \,limit + Lower \,limit}}{2}\)
Taking 11.5 as assumed mean (a), \(d_i\), \(u_i\), and \(f_iu_i\) are calculated according to step deviation method as follows.
Number of letters | Frequency (f\(_i\)) | \(\bf{x_i}\) | \(\bf{d_i = x_i -11.5}\) | \(\bf{u_i = \frac{d_i}{3}}\) | \(\bf{f_iu_i}\) |
---|---|---|---|---|---|
1 - 4 | 6 | 2.5 | -9 | -3 | -18 |
4 - 7 | 30 | 5.5 | -6 | -2 | -60 |
7 - 10 | 40 | 8.5 | -3 | -1 | -40 |
10 - 13 | 16 | 11.5 | 0 | 0 | 0 |
13 - 16 | 4 | 14.5 | 3 | 1 | 4 |
16 - 19 | 4 | 17.5 | 6 | 2 | 8 |
Total | 100 |
|
|
| -106 |
From the table, it can be observed that
\(\sum f_i = 100\)
\(\sum f_iu_i = -106\)
Mean, \(\overset{-}{x} = a + (\frac{\sum f_iu_i}{\sum f_i})\times h\)
\(\overset{-}{x}\) = \(11.5 + (\frac{-106 }{100})\times 3\)
\(\overset{-}{x}\) = 11.5 - 3.18
Mean, \(\overset{-}{x}\) = 8.32
The data in the given table can be written as
Number of letters | Frequency (f\(_i\)) |
---|---|
1 - 4 | 6 |
4 - 7 | 30 |
7 - 10 | 40 |
10 - 13 | 16 |
13 - 16 | 4 |
16 - 19 | 4 |
Total | 100 |
From the data given above, it can be observed that the maximum class frequency is 40, belonging to class interval 7 - 10.
Therefore, modal class = 7 - 10
Lower limit (\(l\)) of modal class = 7
Frequency (\(f_1\)) of modal class = 40
Frequency (\(f_0\)) of class preceding the modal class = 30
Frequency (\(f_2\)) of class succeeding the modal class = 16
Class size (\(h\)) = 3
Mode = \(l\) + \((\frac{f_1 - f_0 }{2f_1 - f_0 - f_2)} \times h\)
Mode = \(7 + (\frac{40 - 30 }{ 2(40) - 30 - 16}) \times3\)
Mode =\(7+ [\frac{10}{34}] \times 3\)
Mode = \(7 +( \frac{ 30}{ 34})\)
Mode = 7 + 0.88
Mode = 7.88
Therefore, median number and mean number of letters in surnames is 8.05 and 8.32 respectively while modal size of surnames is 7.88.
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Median class of the following frequency distribution will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-10 & 7 \\ \hline 10-20 & 12 \\ \hline 20-30 & 18 \\ \hline 30-40 & 15 \\ \hline 40-50 & 10 \\ \hline 50-60 & 3 \\ \hline \end{array} \]
The median class of the following frequency distribution will be:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-Interval} & \text{$0$--$10$} & \text{$10$--$20$} & \text{$20$--$30$} & \text{$30$--$40$} & \text{$40$--$50$} \\ \hline \text{Frequency} & \text{$7$} & \text{$8$} & \text{$15$} & \text{$10$} & \text{$5$} \\ \hline \end{array}\]
The following data shows the number of family members living in different bungalows of a locality:
Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
---|---|---|---|---|---|---|
Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम