When all 10 resistors (\( R \)) are connected in series, the maximum resistance is:
\[ R_{\text{max}} = 10R = 10 \times 10 = 100 \, \Omega \]
When all 10 resistors (\( R \)) are connected in parallel, the minimum resistance is:
\[ R_{\text{min}} = \frac{R}{10} = \frac{10}{10} = 1 \, \Omega \]
The ratio is given by:
\[ \frac{R_{\text{max}}}{R_{\text{min}}} = \frac{100}{1} = 100 \]
From the above calculations:
\[ R_{\text{min}} = 1 \, \Omega \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: