In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
A convex lens has power \( P \). It is cut into two halves along its principal axis. Further, one piece (out of two halves) is cut into two halves perpendicular to the principal axis as shown in the figure. Choose the incorrect option for the reported lens pieces.
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
A metallic sphere of radius \( R \) carrying a charge \( q \) is kept at a certain distance from another metallic sphere of radius \( R_4 \) carrying a charge \( Q \). What is the electric flux at any point inside the metallic sphere of radius \( R \) due to the sphere of radius \( R_4 \)?
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is:
All matter we encounter in everyday life consists of smallest units called atoms – the air we breath consists of a wildly careening crowd of little groups of atoms, my computer’s keyboard of a tangle of atom chains, the metal surface it rests on is a crystal lattice of atoms. All the variety of matter consists of less than hundred species of atoms (in other words: less than a hundred different chemical elements).
Every atom consists of an nucleus surrounded by a cloud of electrons. Nearly all of the atom’s mass is concentrated in its nucleus, while the structure of the electron cloud determines how the atom can bind to other atoms (in other words: its chemical properties). Every chemical element can be defined via a characteristic number of protons in its nucleus. Atoms that have lost some of their usual number of electrons are called ions. Atoms are extremely small (typical diameters are in the region of tenths of a billionth of a metre = 10-10 metres), and to describe their properties and behaviour, one has to resort to quantum theory.