Step 1: Understanding the Concept:
The elevation in boiling point ($\Delta T_b$) is a colligative property given by $\Delta T_b = i \times K_b \times m$, where $i$ is the van't Hoff factor. The factor $i$ accounts for association or dissociation of the solute.
Step 2: Key Formula or Approach:
1. $\Delta T_b = i K_b \frac{w_B \times 1000}{M_B \times w_A}$
2. For monomer in acetone, $i = 1$.
3. For dimer in benzene (assuming 100% dimerization), $i = 1 - \alpha/2 = 0.5$.
Step 3: Detailed Explanation:
1. From the acetone solution, find the molar mass ($M_B$) of the acid:
\[ 0.17 = 1 \times 1.7 \times \frac{1.22 \times 1000}{M_B \times 100} \]
\[ 0.17 = 1.7 \times \frac{12.2}{M_B} \implies 0.1 = \frac{12.2}{M_B} \implies M_B = 122 \text{ g mol}^{-1} \]
2. Now, calculate $\Delta T_b$ for the benzene solution ($i = 0.5$ for complete dimerization):
\[ \Delta T_{b, \text{benz}} = 0.5 \times 2.6 \times \frac{1.22 \times 1000}{122 \times 100} \]
\[ \Delta T_{b, \text{benz}} = 0.5 \times 2.6 \times 0.1 = 0.13^\circ\text{C} \]
3. Comparing with $x \times 10^{-2}$:
\[ 0.13 = 13 \times 10^{-2} \implies x = 13 \]
Step 4: Final Answer:
The value of $x$ is 13.