We can use the formula for freezing point depression:
\[
\Delta T_f = \frac{K_f \times m}{M}
\]
Where:
- \(\Delta T_f\) is the freezing point depression,
- \(K_f\) is the cryoscopic constant,
- \(m\) is the molality, and
- \(M\) is the molar mass.
Let \(m_{\text{AB}_2}\) be the molality of AB₂ and \(m_{\text{AB}}\) be the molality of AB. The formula for molality is given by:
\[
m = \frac{\text{mol of solute}}{\text{kg of solvent}}
\]
We can express the molality for each solute:
\[
m_{\text{AB}_2} = \frac{1}{50} \times \frac{1}{M_{\text{AB}_2}}, \quad m_{\text{AB}} = \frac{1}{50} \times \frac{1}{M_{\text{AB}}}
\]
The freezing point depression is proportional to the molality, so:
\[
\frac{\Delta T_f \text{(AB₂)}}{\Delta T_f \text{(AB)}} = \frac{m_{\text{AB}_2}}{m_{\text{AB}}}
\]
Substituting the given values:
\[
\frac{0.689}{1.176} = \frac{\frac{1}{50} \times \frac{1}{M_{\text{AB}_2}}}{\frac{1}{50} \times \frac{1}{M_{\text{AB}}}}
\]
Simplifying this equation:
\[
\frac{0.689}{1.176} = \frac{M_{\text{AB}}}{M_{\text{AB}_2}}
\]
\[
\frac{M_{\text{AB}_2}}{M_{\text{AB}}} = 1.707
\]
Now we can calculate the molar mass of AB₂ by using the fact that \(M_{\text{AB}} = 145 \, \text{g/mol}\):
\[
M_{\text{AB}_2} = 1.707 \times 145 = 145 \, \text{g/mol}
\]
Thus, the molar mass of AB₂ is approximately \( \boxed{145} \, \text{g/mol} \).