Concept:
In a potentiometer:
Potential difference across a length of wire is directly proportional to its balancing length.
At null point, no current flows through the galvanometer.
Hence, ratio of resistances equals ratio of balancing lengths.
Step 1: Initial null condition.
Given null length:
\[
l_1 = 40\ \text{cm}
\]
Total length of potentiometer wire:
\[
L = 100\ \text{cm}
\]
Thus,
\[
\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3}
\]
\[
R_1 = \frac{2}{3}R_2 \quad \cdots (1)
\]
Step 2: After connecting \(16\,\Omega\) in parallel with \(R_2\).
Effective resistance of \(R_2\) in parallel with \(16\,\Omega\):
\[
R_2' = \frac{R_2 \times 16}{R_2 + 16}
\]
New null length:
\[
l_2 = 50\ \text{cm}
\]
Hence,
\[
\frac{R_1}{R_2'} = \frac{50}{50} = 1
\]
\[
R_1 = R_2' \quad \cdots (2)
\]
Step 3: Substitute from equations (1) and (2).
\[
\frac{2}{3}R_2 = \frac{16R_2}{R_2 + 16}
\]
Cancel \(R_2\) (non-zero):
\[
\frac{2}{3} = \frac{16}{R_2 + 16}
\]
Cross-multiplying:
\[
2(R_2 + 16) = 48
\]
\[
2R_2 + 32 = 48
\]
\[
2R_2 = 16 \Rightarrow R_2 = 32\,\Omega
\]
Step 4: Find \(R_1\).
\[
R_1 = \frac{2}{3} \times 32 = \frac{64}{3} = \frac{32}{3}\,\Omega
\]