\( \int_0^1 \cos^{-1}(x) \, dx = ? \)
1. Integration by Parts Formula:
The integration by parts formula is:
\[
\int u \, dv = uv - \int v \, du
\]
2. Choose \( u \) and \( dv \):
Let:
- \( u = \cos^{-1}(x) \)
- \( dv = dx \)
3. Find \( du \) and \( v \):
To differentiate \( u = \cos^{-1}(x) \), we get:
- \( du = -\frac{1}{\sqrt{1 - x^2}} \, dx \)
To integrate \( dv = dx \), we get:
- \( v = x \)
4. Apply the Integration by Parts Formula:
Now, applying the formula for integration by parts:
\[
\int \cos^{-1}(x) \, dx = x \cos^{-1}(x) - \int x \left(-\frac{1}{\sqrt{1 - x^2}}\right) \, dx
\]
Simplifying:
\[
\int \cos^{-1}(x) \, dx = x \cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} \, dx
\]
5. Solve the Remaining Integral:
Now, let's solve the integral:
\[
\int \frac{x}{\sqrt{1 - x^2}} \, dx
\]
Use the substitution:
- Let \( w = 1 - x^2 \), so \( dw = -2x \, dx \), or \( -\frac{dw}{2} = x \, dx \).
Substituting into the integral:
\[
\int \frac{x}{\sqrt{1 - x^2}} \, dx = \int \frac{1}{\sqrt{w}} \left( -\frac{dw}{2} \right)
\]
Simplifying:
\[
= -\frac{1}{2} \int w^{-\frac{1}{2}} \, dw
\]
Integrating:
\[
= -\frac{1}{2} \cdot \frac{w^{\frac{1}{2}}}{\frac{1}{2}} + C = -\sqrt{w} + C
\]
Substituting back \( w = 1 - x^2 \):
\[
= -\sqrt{1 - x^2} + C
\]
6. Substitute Back into the Main Integral:
Now, substitute the result from step 5 back into the main integral:
\[
\int \cos^{-1}(x) \, dx = x \cos^{-1}(x) - \sqrt{1 - x^2} + C
\]
7. Evaluate the Definite Integral:
Now, we evaluate the definite integral:
\[
\int_0^1 \cos^{-1}(x) \, dx
\]
Substituting the limits of integration:
\[
\left[ x \cos^{-1}(x) - \sqrt{1 - x^2} \right]_0^1
\]
* When \( x = 1 \):
\[
1 \times \cos^{-1}(1) - \sqrt{1 - 1^2} = 1 \times 0 - 0 = 0
\]
* When \( x = 0 \):
\[
0 \times \cos^{-1}(0) - \sqrt{1 - 0^2} = 0 - 1 = -1
\]
Therefore:
\[
\int_0^1 \cos^{-1}(x) \, dx = 0 - (-1) = 1
\]
Final Answer:
\[
\int_0^1 \cos^{-1}(x) \, dx = 1
\]
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C