\( \int_0^\pi \frac{x \tan(x)}{\sec(x) + \cos(x)} \, dx = ? \)
1. Simplify the Integrand:
We are given the integral:
\[
\int_0^\pi \frac{x \tan(x)}{\sec(x) + \cos(x)} \, dx
\]
We know that \( \tan(x) = \frac{\sin(x)}{\cos(x)} \) and \( \sec(x) = \frac{1}{\cos(x)} \). Substituting these into the integral:
\[
\int_0^\pi \frac{x \left( \frac{\sin(x)}{\cos(x)} \right)}{\left( \frac{1}{\cos(x)} \right) + \cos(x)} \, dx
\]
To simplify the denominator, we find a common denominator:
\[
\frac{1}{\cos(x)} + \cos(x) = \frac{1 + \cos^2(x)}{\cos(x)}
\]
Substituting this back into the integral:
\[
\int_0^\pi \frac{x \left( \frac{\sin(x)}{\cos(x)} \right)}{\frac{1 + \cos^2(x)}{\cos(x)}} \, dx
\]
Simplifying by multiplying by the reciprocal of the denominator:
\[
\int_0^\pi \frac{x \sin(x)}{\cos(x)} \cdot \frac{\cos(x)}{1 + \cos^2(x)} \, dx
\]
The \( \cos(x) \) terms cancel, leaving:
\[
\int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} \, dx
\]
2. Apply the Property of Definite Integrals:
We can use the property of definite integrals:
\[
\int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx
\]
Let:
\[
I = \int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} \, dx
\]
Then, applying the property:
\[
I = \int_0^\pi \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} \, dx
\]
Since \( \sin(\pi - x) = \sin(x) \) and \( \cos(\pi - x) = -\cos(x) \), we have:
\[
I = \int_0^\pi \frac{(\pi - x) \sin(x)}{1 + \cos^2(x)} \, dx
\]
3. Add the Two Integrals:
Now, add the original integral and the transformed integral:
\[
2I = \int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} \, dx + \int_0^\pi \frac{(\pi - x) \sin(x)}{1 + \cos^2(x)} \, dx
\]
Simplifying:
\[
2I = \int_0^\pi \frac{(x + \pi - x) \sin(x)}{1 + \cos^2(x)} \, dx
\]
\[
2I = \int_0^\pi \frac{\pi \sin(x)}{1 + \cos^2(x)} \, dx
\]
\[
2I = \pi \int_0^\pi \frac{\sin(x)}{1 + \cos^2(x)} \, dx
\]
4. Solve the Integral:
Let \( u = \cos(x) \), so that \( du = -\sin(x) \, dx \). When \( x = 0 \), \( u = \cos(0) = 1 \), and when \( x = \pi \), \( u = \cos(\pi) = -1 \). Substituting:
\[
2I = \pi \int_1^{-1} \frac{-du}{1 + u^2}
\]
Simplifying:
\[
2I = \pi \int_{-1}^1 \frac{du}{1 + u^2}
\]
The integral of \( \frac{1}{1 + u^2} \) is \( \arctan(u) \), so:
\[
2I = \pi \left[ \arctan(u) \right]_{-1}^1
\]
Substituting the limits:
\[
2I = \pi \left[ \arctan(1) - \arctan(-1) \right]
\]
Using \( \arctan(1) = \frac{\pi}{4} \) and \( \arctan(-1) = -\frac{\pi}{4} \), we get:
\[
2I = \pi \left[ \frac{\pi}{4} - \left( -\frac{\pi}{4} \right) \right]
\]
\[
2I = \pi \cdot \frac{\pi}{2}
\]
\[
2I = \frac{\pi^2}{2}
\]
5. Find \( I \):
Dividing both sides by 2:
\[
I = \frac{\pi^2}{4}
\]
Final Answer:
Therefore, the value of the integral is:
\[
\int_0^\pi \frac{x \tan(x)}{\sec(x) + \cos(x)} \, dx = \frac{\pi^2}{4}
\]
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C