∫0π (xtanx) dx/(secx + cosx) = ?
1. Simplify the Integrand:
∫₀^π (x tan(x)) / (sec(x) + cos(x)) dx
We know that tan(x) = sin(x) / cos(x) and sec(x) = 1 / cos(x). Substituting these into the integral:
∫₀^π x * (sin(x) / cos(x)) / ((1 / cos(x)) + cos(x)) dx
To simplify the denominator, find a common denominator:
(1 / cos(x)) + cos(x) = (1 + cos²(x)) / cos(x)
Substitute this back into the integral:
∫₀^π x * (sin(x) / cos(x)) / ((1 + cos²(x)) / cos(x)) dx
Simplify by multiplying by the reciprocal of the denominator:
∫₀^π x * (sin(x) / cos(x)) * (cos(x) / (1 + cos²(x))) dx
The cos(x) terms cancel:
∫₀^π x * sin(x) / (1 + cos²(x)) dx
2. Apply the Property of Definite Integrals:
We can use the property ∫₀^a f(x) dx = ∫₀^a f(a - x) dx.
Let I = ∫₀^π x * sin(x) / (1 + cos²(x)) dx
Then, I = ∫₀^π (π - x) * sin(π - x) / (1 + cos²(π - x)) dx
Since sin(π - x) = sin(x) and cos(π - x) = -cos(x), we have:
I = ∫₀^π (π - x) * sin(x) / (1 + (-cos(x))²) dx
I = ∫₀^π (π - x) * sin(x) / (1 + cos²(x)) dx
3. Add the Two Integrals:
Add the original integral and the transformed integral:
2I = ∫₀^π x * sin(x) / (1 + cos²(x)) dx + ∫₀^π (π - x) * sin(x) / (1 + cos²(x)) dx
2I = ∫₀^π (x + π - x) * sin(x) / (1 + cos²(x)) dx
2I = ∫₀^π π * sin(x) / (1 + cos²(x)) dx
2I = π ∫₀^π sin(x) / (1 + cos²(x)) dx
4. Solve the Integral:
Let u = cos(x). Then du = -sin(x) dx.
When x = 0, u = cos(0) = 1.
When x = π, u = cos(π) = -1.
2I = π ∫₁^(-1) -du / (1 + u²)
2I = π ∫(-1)^1 du / (1 + u²)
2I = π [arctan(u)]_(-1)^1
2I = π [arctan(1) - arctan(-1)]
2I = π [π/4 - (-π/4)]
2I = π [π/2]
2I = π²/2
5. Find I:
I = π²/4
Therefore, the value of the integral is π²/4.
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C