1. Moles of AgBr formed: \[ \text{Moles of AgBr} = \frac{\text{Mass of AgBr}}{\text{Molar mass of AgBr}} = \frac{0.376}{188} = 0.002 \, \text{mol}. \] 2. Moles of Br: \[ \text{Moles of Br} = \text{Moles of AgBr} = 0.002 \, \text{mol}. \] 3. Mass of Br: \[ \text{Mass of Br} = \text{Moles of Br} \times \text{Molar mass of Br} = 0.002 \times 80 = 0.16 \, \text{g}. \] 4. Percentage of Br in compound X: \[ \% \text{of Br} = \frac{\text{Mass of Br}}{\text{Mass of compound}} \times 100 = \frac{0.16}{0.400} \times 100 = 40\%. \]
Final Answer: \( \boxed{40\%} \).
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
Match List-I with List-II: List-I

The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Which of the following circuits has the same output as that of the given circuit?

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).