1. Moles of AgBr formed: \[ \text{Moles of AgBr} = \frac{\text{Mass of AgBr}}{\text{Molar mass of AgBr}} = \frac{0.376}{188} = 0.002 \, \text{mol}. \] 2. Moles of Br: \[ \text{Moles of Br} = \text{Moles of AgBr} = 0.002 \, \text{mol}. \] 3. Mass of Br: \[ \text{Mass of Br} = \text{Moles of Br} \times \text{Molar mass of Br} = 0.002 \times 80 = 0.16 \, \text{g}. \] 4. Percentage of Br in compound X: \[ \% \text{of Br} = \frac{\text{Mass of Br}}{\text{Mass of compound}} \times 100 = \frac{0.16}{0.400} \times 100 = 40\%. \]
Final Answer: \( \boxed{40\%} \).
Match List-I with List-II: List-I
The correct increasing order of stability of the complexes based on \( \Delta \) value is:


Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
