1. Moles of AgBr formed: \[ \text{Moles of AgBr} = \frac{\text{Mass of AgBr}}{\text{Molar mass of AgBr}} = \frac{0.376}{188} = 0.002 \, \text{mol}. \] 2. Moles of Br: \[ \text{Moles of Br} = \text{Moles of AgBr} = 0.002 \, \text{mol}. \] 3. Mass of Br: \[ \text{Mass of Br} = \text{Moles of Br} \times \text{Molar mass of Br} = 0.002 \times 80 = 0.16 \, \text{g}. \] 4. Percentage of Br in compound X: \[ \% \text{of Br} = \frac{\text{Mass of Br}}{\text{Mass of compound}} \times 100 = \frac{0.16}{0.400} \times 100 = 40\%. \]
Final Answer: \( \boxed{40\%} \).
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
Match List-I with List-II: List-I
List I (Molecule) | List II (Number and types of bond/s between two carbon atoms) | ||
A. | ethane | I. | one σ-bond and two π-bonds |
B. | ethene | II. | two π-bonds |
C. | carbon molecule, C2 | III. | one σ-bonds |
D. | ethyne | IV. | one σ-bond and one π-bond |
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: