The median of 10, 15, x and y is 18.5, and x < y.
\(\frac{1-x}{x-1} = \frac{1}{x}, \; x \neq 1\)
COLUMN A: The perimeter of the shaded region in the rectangleCOLUMN B: \(2\sqrt{2}+2\)
y = 3x – 1COLUMN A: xCOLUMN B: \(\frac{y}{3}+3\)
COLUMN A: \(37\times\frac{37}{36}\) COLUMN B: \(37+\frac{37}{36}\)
x and y are positive integers and x > y.COLUMN A: \(\frac{x^2}{y^3}\)COLUMN B: \(\frac{y^3}{x^2}\)
COLUMN A: 0.01% of 1,000COLUMN B: 1
The figure shows a cube with edge of length e.COLUMN A: The length of diagonal ABCOLUMN B: \(\sqrt{2}e\)
1 < x < yCOLUMN A: x+4COLUMN B: y
COLUMN A: The length of STCOLUMN B: The length of RS
The geometric mean of any two positive numbers x and y is \(\sqrt{xy}\)COLUMN A: The geometric mean of 4 and 8COLUMN B: The average arithmetic mean of 4 and 8
x + 5 = 3 y = 2xCOLUMN A: xCOLUMN B: y
1 gallon = 8 pints1 quart = 2 pintsCOLUMN A: The least number of half-pint bottles needed of to hold x quarts milkCOLUMN B: The least number of one-quart bottles needed to hold x gallons of milk