The following graph is a combination of:
Let \(\mathbf{a}, \mathbf{b}\) and \(\mathbf{c}\) be three vectors such that $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \text{ and } \mathbf{a} \times \mathbf{b} \neq 0 \text{ Show that } \mathbf{b} = \mathbf{c}$.
Let \(\mathbf{a}, \mathbf{b}\) and \(\mathbf{c}\) be three vectors such that \(\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}\) and \(\mathbf{a} \times \mathbf{b} \neq 0. Show \;that \;\mathbf{b} = \mathbf{c}\).
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ such that $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between $\vec{a}$ and $\vec{b}$.