In the Linear Programming Problem (LPP), find the point/points giving the maximum value for \( Z = 5x + 10y\) subject to the constraints:
\[x + 2y \leq 120 \\ x + y \geq 60 \\ x - 2y \geq 0 \\ x \geq 0, y \geq 0\]
Assertion (A): The shaded portion of the graph represents the feasible region for the given Linear Programming Problem (LPP).
Reason (R): The region representing \( Z = 50x + 70y \) such that \( Z < 380 \) does not have any point common with the feasible region.
For a Linear Programming Problem (LPP), the given objective function \( Z = 3x + 2y \) is subject to constraints: \[ x + 2y \leq 10, \] \[ 3x + y \leq 15, \] \[ x, y \geq 0. \]
The correct feasible region is:
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4:3. Their Balance Sheet as at 31st March, 2024 was as
On $1^{\text {st }}$ April, 2024, Diya was admitted in the firm for $\frac{1}{7}$ share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.