We use the half angle identity for the trigonometric function: \[ 1 + \sin x = 2\cos^2\left(\frac{x}{2}\right). \] Thus, the integral becomes: \[ \int \sqrt{2\cos^2\left(\frac{x}{2}\right)} \, dx = \int 2\cos\left(\frac{x}{2}\right) \, dx. \] Now, use the substitution \( u = \frac{x}{2} \), \( du = \frac{1}{2}dx \): \[ 2 \int \cos(u) \, du = 2\sin(u) + C = 2\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) + C. \]