For a Linear Programming Problem (LPP), the given objective function \( Z = 3x + 2y \) is subject to constraints: \[ x + 2y \leq 10, \] \[ 3x + y \leq 15, \] \[ x, y \geq 0. \]
The correct feasible region is:
The feasible region of a Linear Programming Problem (LPP) is determined by the intersection of the inequalities.
The feasible region is the set of points that satisfy all the constraints.
- Plot the given constraints on a coordinate plane:
1. \( x + 2y = 10 \) is a straight line.
2. \( 3x + y = 15 \) is another straight line.
3. \( x, y \geq 0 \) represents the first quadrant.
- The feasible region will be bounded by the lines and will be the area that satisfies all these constraints.
From the diagram, the feasible region is the region enclosed by the points \( A, O, E, C \), and the correct region is \( AOEC \).
For a Linear Programming Problem, find min \( Z = 5x + 3y \) (where \( Z \) is the objective function) for the feasible region shaded in the given figure.
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner: