>
Mathematics
List of top Mathematics Questions
The amplitude of
$\sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right) $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
argand plane
The angle between the asymptotes of the hyperbola
$x^2 - 3y^2 = 12$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Hyperbola
A set
$A$
has
$5$
elements. Then the maximum number of relations on
$A$
(including empty relation) is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Relations and functions
If
$a= 5, b = 13 , c = 12$
in
$\Delta ABC$
, then
$\tan \frac{B}{4}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Trigonometric Functions
The derivative of
$\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) $
with respect to
$\cot^{-1} \left(\frac{1-3x^{2}}{3x-x^{3}}\right)$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The function $f(x) = \begin{cases} x^2 & \quad \text{for } x < 1\\ 2 - x & \quad \text{for } x \geq 1 \end{cases}$ is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The maximum value of
$ f(x) = \frac{\log x}{x} , 0 < x < \infty$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Maxima and Minima
The vectors
$\vec{a} = x \hat{i} + (x +1) \hat{j} + ( x +2 ) \hat{k} $
$\vec{b} = (x + 3) \hat{i} + (x +4) \hat{j} + ( x + 5 ) \hat{k} $
, and
$\vec{c} = (x + 6) \hat{i} + (x + 7 ) \hat{j} + ( x + 8) \hat{k} $
are co-planar for
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The value of
$[ \vec{a} - \vec{b} \,\,\,\,\,\, \vec{b} - \vec{c} \,\,\,\,\,\, \vec{c} - \vec{a} ]$
where
$|\vec{a}| = 1 , |\vec{b} | = 5 , |\vec{c}| = 3 $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
If the medians
$AD$
and
$BE$
of the triangle with vertices
$A(0, b), B(0, 0), C(a, 0)$
are mutually perpendicular, then
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Straight lines
If
$x^y = \log x$
, then
$\frac{dy}{dx} $
at the point where the curve cuts the
$x-axis$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
$y = \tan^{-1} ( \sec x - \tan x) $
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
$a$
and
$ b$
are positive integers such that
$a^2 - b^2$
is a prime number, then
$a^2 - b^2$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Binomial theorem
Let $f(x) = \begin{cases} -2 \sin x, &x \leq - \pi /2 \\ a \sin x +b, & - \pi /2 < x < \pi /2 \\ \cos \, x , & x \geq \pi /2 \end{cases}
$ then the? values of a and b so that $
f(x)$ is continuous are
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Statistics
If
$A, B, C, D$
are four points and
$\vec{AB} = \vec{DC}$
, then
$\vec{AC} + \vec{BD} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The ninth term of the expansion
$\left(3x-\frac {1}{2x}\right)^8$
is
KCET - 2007
KCET
Mathematics
Binomial theorem
A vector perpendicular to the plane containing the points
$A (1, -1, 2), B (2, 0, -1), C (0,2,1)$
is
KCET - 2007
KCET
Mathematics
Three Dimensional Geometry
The solution of
$Tan^{-1}x+ 2cot^{-1}x=\frac {2\pi}{3}$
is
KCET - 2007
KCET
Mathematics
Inverse Trigonometric Functions
$Sin^2 \; 17.5^{\circ} + Sin^2 \; 72.5^{\circ}$
is equal to
KCET - 2007
KCET
Mathematics
Trigonometric Functions
The value of
$\int \frac{x^2+1}{x^2-1}dx$
is
KCET - 2007
KCET
Mathematics
Definite Integral
The value of
$\int e^x(x^5+5x^4+1).dx $
is
KCET - 2007
KCET
Mathematics
Methods of Integration
If $x > 0$ and $\log_{3} x+\log_{3}\left(\sqrt{x}\right)+\log_{3}\left(\sqrt[4]{x}\right)+\log_{3}\sqrt[8]{x}+\log_{3}\left(\sqrt[16]{x}\right)+....=4,$ then x equals
VITEEE - 2007
VITEEE
Mathematics
Series
The orthocentre of the triangle with vertices $O(0, 0), A(0,3/2)$ and $B(-5, 0)$ is
KCET - 2007
KCET
Mathematics
Three Dimensional Geometry
If
$\frac {x^2}{36}-\frac{y^2} {k^2} = 1$
is a hyperbola, then which of the following statements can be true ?
KCET - 2007
KCET
Mathematics
Conic sections
If a and b are vectors such that
$|a+b|=|a-b|$
then the angle between a and b is
KCET - 2007
KCET
Mathematics
Vector Algebra
Prev
1
...
909
910
911
912
913
...
1168
Next