Let $M$ be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $S =\left\{x \in Z : x(66-x) \geq \frac{5}{9} M\right\}$ and the event $A =\{x \in S : x$ is a multiple of 3$\}$. Then $P ( A )$ is equal to
Let $y (x)=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)$. Then $y^{\prime}-y^{\prime \prime}$ at $x=-1$ is equal to :
Let $z_1=2+3 i$ and $z_2=3+4 i$. The set $S=\left\{z \in C:\left|z-z_1\right|^2-\left|z-z_2\right|^2=\left|z_1-z_2\right|^2\right\}$ represents a
Let the plane $P : 8 x+\alpha_1 y+\alpha_2 z+12=0$ be parallel to the line $L : \frac{x+2}{2}=\frac{y-3}{3}=\frac{z+4}{5}$. If the intercept of $P$ on the $y$-axis is 1 , then the distance between $P$ and $L$ is :
The absolute minimum value, of the function $f(x)=\left|x^2-x+1\right|+\left[x^2-x+1\right]$, where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is:
The number of values of $r \in\{p, q, \sim p, \sim q\}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is :