For x≤0
f(x)=0∫2et−xdt=e−x(e2−1)
For 0<x<2
f(x)=0∫xex−tdt+∫x2et−xdt=ex+e2−x−2
For x≥2
f(x)=0∫2ex−tdt=ex−2(e2−1)
For x≤0,f(x) is ↓ and x≥2,f(x) is ↑
∴ Minimum value of f(x) lies in x∈(0,2)
Applying A.M≥G.M,
minimum value of f(x) is 2(e−1)
| List - I(Number) | List - II(Significant figure) |
| (A) 1001 | (I) 3 |
| (B) 010.1 | (II) 4 |
| (C) 100.100 | (III) 5 |
| (D) 0.0010010 | (IV) 6 |
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.
