For x≤0
f(x)=0∫2et−xdt=e−x(e2−1)
For 0<x<2
f(x)=0∫xex−tdt+∫x2et−xdt=ex+e2−x−2
For x≥2
f(x)=0∫2ex−tdt=ex−2(e2−1)
For x≤0,f(x) is ↓ and x≥2,f(x) is ↑
∴ Minimum value of f(x) lies in x∈(0,2)
Applying A.M≥G.M,
minimum value of f(x) is 2(e−1)
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is:
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.
