If \(A=\frac{1}{2}\begin{bmatrix}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{bmatrix}\), then :
Let the shortest distance between the lines $L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0$ and $L_1: x+1=y-1=4-z$ be $2 \sqrt{6}$ If $(\alpha, \beta, \gamma)$ lies on $L$, then which of the following is NOT possible?
For the system of linear equations\(\alpha x+y+z=1, x+\alpha y+z=1, x+y+\alpha z=\beta\) which one of the following statements is NOT correct ?
Let αx=exp(xβyγ) be the solution of the differential equation 2x2ydy−(1−xy2) dx = 0, x>0 , y(2)=\(\sqrt {log_e2}\). Then α+β−γ equals :
x=logp and y=1/p differential equation
Let \(f:R→R\) be a function defined by \(f(x)=x^2+9\).The range of \(f \) is
The sum of the absolute maximum and minimum values of the function \(f(x)=\left|x^2-5 x+6\right|-3 x+2\)in the interval \([-1,3]\) is equal to :