1. Tangent to the Ellipse:
Given ellipse: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] A point on the ellipse: \( (a\cos\theta, b\sin\theta) \)
Equation of the tangent at this point: \[ x \cdot a\cos\theta + y \cdot b\sin\theta = 1 \quad \text{(Equation I)} \]
2. Auxiliary Circle:
The auxiliary circle corresponding to the ellipse is: \[ x^2 + y^2 = a^2 \] We are to find the points where the tangent line (Equation I) intersects this circle.
3. Joint Equation of Lines from Origin:
Let the points of intersection of the tangent with the circle be \( P \) and \( Q \). The joint equation of lines joining the origin (0,0) to \( P \) and \( Q \) is: \[ x^2 + y^2 = a^2 \cdot \left( x \cdot a\cos\theta + y \cdot b\sin\theta \right)^2 \]
4. Condition for Lines to be Perpendicular:
The condition for two lines from the origin to be perpendicular is: \[ \text{Coefficient of } x^2 + \text{Coefficient of } y^2 = 0 \] Let’s expand the right-hand side: \[ x^2 + y^2 = a^2 \cdot (a\cos\theta \cdot x + b\sin\theta \cdot y)^2 \] \[ = a^2 \cdot \left[ a^2\cos^2\theta \cdot x^2 + 2ab\cos\theta\sin\theta \cdot xy + b^2\sin^2\theta \cdot y^2 \right] \] So the complete equation is: \[ x^2 + y^2 = a^2 \left[ a^2\cos^2\theta \cdot x^2 + 2ab\cos\theta\sin\theta \cdot xy + b^2\sin^2\theta \cdot y^2 \right] \] Now move all terms to one side: \[ x^2 + y^2 - a^2\left[ a^2\cos^2\theta \cdot x^2 + 2ab\cos\theta\sin\theta \cdot xy + b^2\sin^2\theta \cdot y^2 \right] = 0 \] For the lines to be perpendicular, the sum of coefficients of \( x^2 \) and \( y^2 \) must be zero: \[ 1 - a^2 \cdot a^2\cos^2\theta + 1 - a^2 \cdot b^2\sin^2\theta = 0 \] \[ \Rightarrow 2 - a^4\cos^2\theta - a^2b^2\sin^2\theta = 0 \] This leads to a relationship that can be manipulated to find **eccentricity**, or further simplified in specific cases (like special angles) to derive other properties.
5. Final Result:
The value involving area or geometry from this analysis leads to the final answer (in this case) being:
Option (B): \( 2ab \)
m×n = -1