>
KEAM
>
Mathematics
List of top Mathematics Questions on Differentiability asked in KEAM
If
x
=
s
i
n
−
1
(
3
t
−
4
t
3
)
x=sin^{-1}\left(3t-4t^{3}\right)
x
=
s
i
n
−
1
(
3
t
−
4
t
3
)
and
y
=
c
o
s
−
1
(
1
−
t
2
)
y=cos^{-1}\left(\sqrt{1-t^{2}}\right)
y
=
co
s
−
1
(
1
−
t
2
)
, then
d
y
d
x
\frac{dy}{dx}
d
x
d
y
is equal to
KEAM
Mathematics
Differentiability
If
f
(
x
)
=
2
x
+
4
2
x
f(x) = \sqrt{2x} + \frac{4}{\sqrt{2x}}
f
(
x
)
=
2
x
+
2
x
4
, then
f
′
(
2
)
f'(2)
f
′
(
2
)
is equal to
KEAM
Mathematics
Differentiability
If
y
=
sin
−
1
(
3
x
−
4
x
3
)
+
cos
−
1
(
4
x
3
−
3
x
)
y={{\sin }^{-1}}(3x-4{{x}^{3}})+{{\cos }^{-1}}(4{{x}^{3}}-3x)
y
=
sin
−
1
(
3
x
−
4
x
3
)
+
cos
−
1
(
4
x
3
−
3
x
)
+
tan
−
1
(
e
)
,
+{{\tan }^{-1}}(e),
+
tan
−
1
(
e
)
,
then
d
y
d
x
\frac{dy}{dx}
d
x
d
y
is equal to
KEAM
Mathematics
Differentiability
If
y
=
tan
−
1
(
cos
x
1
+
sin
x
)
,
y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right),
y
=
tan
−
1
(
1
+
s
i
n
x
c
o
s
x
)
,
then
d
y
d
x
\frac{dy}{dx}
d
x
d
y
is equal to
KEAM
Mathematics
Differentiability
If f(x)=
(
x
2
)
10
,
t
h
e
n
f
(
1
)
+
f
′
(
1
)
⌊
1
+
f
(
1
)
⌊
2
+
f
′
(
1
)
⌊
3
+
…
+
f
(
10
)
(
1
)
⌊
10
\left(\frac{x}{2}\right)^{10}, then\, f \left(1\right)+\frac{f '\left(1\right)}{\lfloor1}+\frac{f \left(1\right)}{\lfloor2}+\frac{f '\left(1\right)}{\lfloor3}+\ldots+\frac{f ^{\left(10\right)}\left(1\right)}{\lfloor10}
(
2
x
)
10
,
t
h
e
n
f
(
1
)
+
⌊
1
f
′
(
1
)
+
⌊
2
f
(
1
)
+
⌊
3
f
′
(
1
)
+
…
+
⌊
10
f
(
10
)
(
1
)
is equal to
KEAM
Mathematics
Differentiability
If
y
2
=
100
tan
−
1
x
+
45
s
e
c
−
1
x
,
y^{2}=100 \tan^{-1}x+45 sec^{-1}x ,
y
2
=
100
tan
−
1
x
+
45
se
c
−
1
x
,
then
d
y
d
x
=
\frac{dy}{dx}=
d
x
d
y
=
KEAM
Mathematics
Differentiability
If
y
=
sin
−
1
1
−
x
,
y={{\sin }^{-1}}\sqrt{1-x},
y
=
sin
−
1
1
−
x
,
then
d
y
d
x
\frac{dy}{dx}
d
x
d
y
is equal to
KEAM
Mathematics
Differentiability
The derivative of
sin
−
1
(
2
x
1
−
x
2
)
{{\sin }^{-1}}(2x\sqrt{1-{{x}^{2}}})
sin
−
1
(
2
x
1
−
x
2
)
with respect to
sin
−
1
(
3
x
−
4
x
3
)
{{\sin }^{-1}}(3x-4{{x}^{3}})
sin
−
1
(
3
x
−
4
x
3
)
is
KEAM
Mathematics
Differentiability
The functions
f
,
g
f , g
f
,
g
and
h
h
h
satisfy the relations
f
′
(
x
)
=
g
(
x
+
1
)
f ^{'}\left(x\right)=g\left(x+1\right)
f
′
(
x
)
=
g
(
x
+
1
)
. Then
f
"
(
2
x
)
f ^{"}\left(2x\right)
f
"
(
2
x
)
is equal to
KEAM
Mathematics
Differentiability
If
y
=
x
x
+
1
+
x
+
1
x
,
y=\frac{x}{x+1}+\frac{x+1}{x},
y
=
x
+
1
x
+
x
x
+
1
,
then
d
2
y
d
x
2
\frac{d^{2}y}{dx^{2}}
d
x
2
d
2
y
at
x
=
1
x=1
x
=
1
is equal to
KEAM
Mathematics
Differentiability