Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is:
For the reaction:
$3Fe_{(s)} + 2O_2{(g)} \rightarrow Fe_3O_4{(s)}$
$\Delta H = -1650\,\text{kJ mol}^{-1}$, $\Delta S = -600\,\text{J K}^{-1} \text{mol}^{-1}$ at $300\,\text{K}$. What is the value of free energy change for the reaction at $300\,\text{K}$?
A function is said to be continuous at a point x = a, if
limx→a
f(x) Exists, and
limx→a
f(x) = f(a)
It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is undefined or does not exist, then we say that the function is discontinuous.
Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions: