Question:

If $x=sin^{-1}\left(3t-4t^{3}\right)$ and $y=cos^{-1}\left(\sqrt{1-t^{2}}\right)$, then $\frac{dy}{dx}$ is equal to

Updated On: Oct 4, 2024
  • $\frac{1}{2}$
  • $\frac{2}{3}$
  • $\frac{1}{3}$
  • $\frac{2}{5}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$x=\sin ^{-1}\left(3 t-4 t^{3}\right) $
and $y=\cos ^{-1}\left(\sqrt{1-t^{2}}\right)$
Put $t=\sin \theta \,\,\,\,\,\,\dots(i)$
Then, $x =\sin ^{-1} \left(3 \sin \theta-4 \sin ^{3} \theta\right)$
$=\sin ^{-1}(\sin 3 \theta)=3 \theta=3 \sin ^{-1} t $
and $ y=\cos ^{-1} \sqrt{1-\sin ^{2} \theta} $
$=\cos ^{-1}(\cos\, \theta)=\theta=\sin ^{-1} t $
Now, $\frac{d x}{d t} =\frac{3}{\sqrt{1-t^{2}}}$
$ \frac{d y}{d t}=\frac{1}{\sqrt{1-t^{2}}} $
$ \Rightarrow \,\frac{d y}{d x} =\frac{d y}{d t} \cdot \frac{d t}{d x} $
$ \frac{d y}{d x} =\frac{1}{\sqrt{1-t^{2}}} \times \frac{\sqrt{1-t^{2}}}{3}$
$=\frac{1}{3} $
Was this answer helpful?
6
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.