Question:

If $ y={{\sin }^{-1}}(3x-4{{x}^{3}})+{{\cos }^{-1}}(4{{x}^{3}}-3x) $ $ +{{\tan }^{-1}}(e), $ then $ \frac{dy}{dx} $ is equal to

Updated On: Jun 8, 2024
  • $ 5 $
  • $ 0 $
  • $ \frac{2}{\sqrt{1+{{x}^{2}}}} $
  • $ \frac{2}{\sqrt{1-{{x}^{2}}}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given, $ y={{\sin }^{-1}}{{(3x-4x)}^{2}}+{{\cos }^{-1}}(4{{x}^{3}}-3x) $ $ +{{\tan }^{-1}}(E) $
$ \Rightarrow $ $ y=3{{\sin }^{-1}}x+3{{\cos }^{-1}}x+{{\tan }^{-1}}(E) $
$ \Rightarrow $ $ y=\frac{3\pi }{2}+{{\tan }^{-1}}(E) $
On differentiating w.r.t. $ x, $ we get $ \frac{dy}{dx}=0 $
Was this answer helpful?
1
0

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.