>
KEAM
>
Mathematics
List of top Mathematics Questions asked in KEAM
Let
$a, b, c$
be in
$AP$
. If
$ 0 < a,b,c < 1 ,x=\sum\limits_{n=0}^{\infty }{{{a}^{n}}}, $
$ y=\sum\limits_{n=0}^{\infty }{{{b}^{n}}} $
and
$ z=\sum\limits_{n=0}^{\infty }{{{c}^{n}}}, $
then
KEAM
Mathematics
Sequence and series
If
$^{n}C_{r-1}=28$
,
$^{n}C_{r}=56$
and
$^{n}C_{r+1}=70$
, then the value of
$r$
is equal to
KEAM
Mathematics
permutations and combinations
If
$A = \begin{bmatrix}log\,x&-1\\ -log\,x&2\end{bmatrix}$
and if
$det (A) = 2$
, then the value of
$x$
is equal to
KEAM
Mathematics
Determinants
The remainder when
$2^{2016}$
is divided by
$63$
, is
KEAM
Mathematics
Binomial theorem
Let
$ A(1,-1,2) $
and
$ B(2,3,-1) $
be two points. If a point
$P$
divides
$AB$
internally in the ratio
$ 2:3, $
then the position vector of
$P$
is
KEAM
Mathematics
Vector Algebra
If
$f \left(z\right)=\frac{1-z^{3}}{1-z} ,$
where
$z=x+iy$
with
$z\ne1,$
then
$Re\left\{\overline{f \left(z\right)}\right\}=0$
reduces to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
If
$ {{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z, $
then modulus of the complex number
$z$
is equal to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
The value of
$\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\cdots+\frac{1}{i^{102}}$
is
KEAM
Mathematics
Algebra of Complex Numbers
$\int\limits_{0}^{1} x e^{-5x} \, dx$
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
The number of ways in which
$5$
ladies and
$7$
gentlemen can be seated in a round table so that no two ladies sit together, is
KEAM
Mathematics
Permutations
If
$ f(x)=(x-2)(x-4)(x-6)....(x-2n), $
then
$ f'(2) $
is
KEAM
Mathematics
limits and derivatives
The total revenue in rupees received from the sale of x units of a product is given by
$ R(x)=13{{x}^{2}}+26x+15 $
. Then, the marginal revolution rupees, when
$ x=15 $
is
KEAM
Mathematics
Derivatives
There are
$10$
persons including
$3$
ladies. A committee of
$4$
persons including at least one lady is to be formed. The number of ways of forming such a committee is
KEAM
Mathematics
permutations and combinations
The order of the differential equation
$\left(\frac{d^{3}\, y }{dx^{3}}\right)^{2} + \left(\frac{d^{2}\,y}{dx}\right)^{2} + \left(\frac{dy}{dx}\right)^{5} = 0 $
is
KEAM
Mathematics
Differential equations
If
$x=5+2$
sec
$\theta$
and
$y=5+2\, \tan \, \theta ,$
then
$\left(x-5\right)^{2}-\left(y-5\right)^{2}$
is equal to
KEAM
Mathematics
Properties of Inverse Trigonometric Functions
Let
$O$
be the origin and
$A$
be the point
$(64, 0).$
If
$P$
,
$Q$
divide
$OA$
in the ratio
$1 : 2 : 3$
, then the point
$P$
is
KEAM
Mathematics
Straight lines
If
$ \overrightarrow{a},\text{ }\overrightarrow{b},\text{ }\overrightarrow{c} $
are non-coplanar and
$ (\overrightarrow{a}+\lambda \overrightarrow{b}).[(\overrightarrow{b}+3\overrightarrow{c})\times (\overrightarrow{c}\times 4\overrightarrow{a})]=0, $
then the value of
$ \lambda $
is equal to
KEAM
Mathematics
Vector Algebra
The image of the interval [-1, 3] under the mapping
$f : R\rightarrow R$
given by
$f \left(x\right)=4x^{3}-12x$
is
KEAM
Mathematics
Binary operations
If
$ x={{\sin }^{-1}}(3t-4{{t}^{3}}) $
and
$ y={{\cos }^{-1}}(\sqrt{1-{{t}^{2}}}), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
If
$A$
and
$B$
are square matrices of the same order and if
$A=A^{T},B=B^{T},$
then
$\left(ABA\right)^{T}=$
KEAM
Mathematics
Matrices
If
$ y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Mathematics
Derivatives
The principal argument of the complex numb
$Z=\frac{1+\sin \frac{\pi}{3}+i \cos\frac{\pi}{3} }{1+\sin \frac{\pi}{3} - i \cos\frac{\pi}{3} }$
is
KEAM
Mathematics
Complex numbers
The set
$\{(x, y) : x + y =1\}$
in the
$xy$
plane represents
KEAM
Mathematics
applications of integrals
In the expansion of
$ {{(1+x+{{x}^{2}}+{{x}^{3}})}^{6}}, $
the coefficient of
$ {{x}^{14}} $
is
KEAM
Mathematics
Binomial theorem
If the projection of the vector
$\vec {a}$
on
$\vec{b}$
is
$ \overrightarrow{a} $
on
$ \overrightarrow{b} $
is
$ |\overrightarrow{a}\times \overrightarrow{b}| $
and if
$ 3\overrightarrow{b}=\vec{i}+\vec{j}+\vec{k}, $
then the angle between
$ \vec{a} $
and
$ \vec{b} $
is
KEAM
Mathematics
Vector Algebra
Prev
1
...
36
37
38
39
40
...
47
Next