\(2^{2016}=\left(2^{6}\right)^{336}=(64)^{336}=(63+1)^{336}\)
\((63+1)^{336}=^{366}C_0(63)^0(1)^{366}+^{366}C_1(63)^1(1)^{364}+^{366}C_2(63)^2(1)^{362}+…… = 1+63K\)
\(\therefore\) Remainder \(=1\)
So, the correct option is (A): \(1\)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
In the expansion of \[ \left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n , \, n \in \mathbb{N}, \] if the ratio of the 15th term from the beginning to the 15th term from the end is \[ \frac{1}{6}, \] then the value of \[ {}^nC_3 \] is:
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
