\(2^{2016}=\left(2^{6}\right)^{336}=(64)^{336}=(63+1)^{336}\)
\((63+1)^{336}=^{366}C_0(63)^0(1)^{366}+^{366}C_1(63)^1(1)^{364}+^{366}C_2(63)^2(1)^{362}+…… = 1+63K\)
\(\therefore\) Remainder \(=1\)
So, the correct option is (A): \(1\)
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is