22016=(26)336=(64)336=(63+1)3362^{2016}=\left(2^{6}\right)^{336}=(64)^{336}=(63+1)^{336}22016=(26)336=(64)336=(63+1)336
(63+1)336=366C0(63)0(1)366+366C1(63)1(1)364+366C2(63)2(1)362+……=1+63K(63+1)^{336}=^{366}C_0(63)^0(1)^{366}+^{366}C_1(63)^1(1)^{364}+^{366}C_2(63)^2(1)^{362}+…… = 1+63K(63+1)336=366C0(63)0(1)366+366C1(63)1(1)364+366C2(63)2(1)362+……=1+63K
∴\therefore∴ Remainder =1=1=1
So, the correct option is (A): 111
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is