Question:

If y=sin2cot11+x1x, y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, then dydx \frac{dy}{dx} is equal to

Updated On: Jun 8, 2024
  • 2sin2x 2\sin 2x
  • sin2x \sin 2x
  • 12 \frac{1}{2}
  • 12 -\frac{1}{2}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

y=sin2cot11+x1x y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}} Put, x=cosθ x=\cos \theta
\Rightarrow θ=cos1x \theta ={{\cos }^{-1}}x ...(i) y=sin2cot11+cosθ1cosθ y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+\cos \theta }{1-\cos \theta }} y=sin2cot12cos2θ/22sin2θ/2 y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{2{{\cos }^{2}}\theta /2}{2{{\sin }^{2}}\theta /2}} y=sin2cot1(cotθ/2) y={{\sin }^{2}}{{\cot }^{-1}}(\cot \theta /2) y=sin2θ/2 y={{\sin }^{2}}\theta /2 y=1cosθ2 y=\frac{1-\cos \theta }{2} y=1x2 y=\frac{1-x}{2} [From E(i)] Differentiating w.r.t. x, x, we get dydx=12 \frac{dy}{dx}=-\frac{1}{2}
Was this answer helpful?
0
0

Top Questions on Derivatives

View More Questions