>
KCET
>
Mathematics
List of top Mathematics Questions asked in KCET
If If
$n =(2020)$
, then
$\frac {1}{\log_2n}+\frac {1}{\log_3n}+\frac {1}{\log_4n}+............+\frac {1}{\log_{2020} n}$
KCET - 2009
KCET
Mathematics
Sequence and series
If
$\vec{a}+2\vec{b}+3\vec{c}=\vec{0}$
then
$\vec{a} \times \vec{b}+\vec{b} \times \,\vec{c}+\vec{c} \times \vec{a} $
=
KCET - 2009
KCET
Mathematics
Vector Algebra
If
$A$
and
$B$
are square matrices of the same order such that
$(A + B) (A -B) = A^2-B^2$
then
$(ABA^{-1} )^2=$
KCET - 2009
KCET
Mathematics
Matrices
The negation of
$p{\land}(q \to \sim r)$
is
KCET - 2009
KCET
Mathematics
validating statements
If
$'n '$
is a positive integer, then
$n^3 + 2n$
is divisible by
KCET - 2009
KCET
Mathematics
Definite Integral
On the set of integers
$Z$
. define
$f: Z \to Z$
as $ f(n) = \begin{cases} n/2 & \quad \text{if } n \text{ is even}\\ 0 & \quad \text{if } n \text{ is odd}\\ \end{cases}
$ then $
'f'$ is
KCET - 2009
KCET
Mathematics
types of functions
The complex number
$\frac {1+2i}{1-i}$
lies in
KCET - 2009
KCET
Mathematics
complex numbers
A cow is tied to a post by a rope. The cow moves along the circular path always keeping the rope tight. If it describes
$44\, metres$
, when it has traced out
$72^\circ$
at the centre, the length of the rope is
KCET - 2009
KCET
Mathematics
Trigonometric Functions
For the parabola
$y^2 = 4x$
, the point
$P$
whose focal distance is
$17$
, is
KCET - 2009
KCET
Mathematics
Conic sections
The area bounded between the parabola
$y^2= 4x$
and the line
$y = 2x - 4$
is equal to
KCET - 2009
KCET
Mathematics
Area between Two Curves
$\cot^{-1} (2.1^{2})+\cot^{-1} (2.2^{2})+\cot^{-1}(2.3^2)+$
.........up to
$\infty$
=
KCET - 2009
KCET
Mathematics
Inverse Trigonometric Functions
The number of subgroups of the group
$(Z_5, +_5)$
is
KCET - 2009
KCET
Mathematics
Relations and functions
If $A=\begin{bmatrix} {2}&{1} &{0}\\ {0}&{2}& {1} \\ {1}&{0}&{2}\\ \end{bmatrix}
$ then $
| adj A|$ =
KCET - 2009
KCET
Mathematics
Determinants
If
$\alpha$
and
$\beta$
are the roots of
$x^2 + x + 1 = 0$
then
$\alpha^{16}+\beta^{16}$
=
KCET - 2009
KCET
Mathematics
Complex Numbers and Quadratic Equations
If one side of a triangle is double the other and the angles opposite to these sides differ by
$60^\circ$
, then the triangle is
KCET - 2009
KCET
Mathematics
Trigonometric Functions
In the group
$G= \{0, 1,2, 3,4, 5\}$
under addition modulo
$6,(2 +_6 3^{-1} +_6 4)^{-1}$
=
KCET - 2009
KCET
Mathematics
Relations and functions
The smallest positive integral value of
$'n'$
such that
$\left[\frac {1+\sin \frac {\pi}{8}+\,i\,\cos \frac {\pi}{8}}{1+\sin \frac {\pi}{8}-\,i\,\cos \frac {\pi}{8}} \right]^n$
is purely imaginary is,
$n$
=
KCET - 2009
KCET
Mathematics
Trigonometric Equations
If
$\vec{a}.\vec{b}\, = \,- |\vec{a}| \, |\vec{b}|$
then the angle between
$\vec{a}$
and
$ \vec{b}$
is
KCET - 2009
KCET
Mathematics
Vector Algebra
If the volume of the parallelopiped with
$ \vec{a},\vec{b} $
and
$ \vec{c}$
as coterminous edges is
$40 \,cubic$
units, then the volume of the parallelopiped having
$ \vec{b}+\vec{c} , \vec{c}+ \vec{a} $
and
$ \vec{a}+ \vec{b}$
as coterminous edges in cubic units is
KCET - 2009
KCET
Mathematics
Vector Algebra
If $\begin{vmatrix} {1+\sin^2}&{\cos^2 \theta } &{4\sin 2\theta}\\ {\sin^2}&{1+\cos^2}& {4\sin2\theta} \\ {\sin^2\theta}&{\cos^2\theta}&{4\sin2\theta-1}\\ \end{vmatrix} =0
$ and $
0< \theta
KCET - 2009
KCET
Mathematics
Determinants
The foot of the perpendicular from the point $(2, 4)$ upon $x + y = 4$ is
KCET - 2009
KCET
Mathematics
Straight lines
On the set of all natural numbers $N$, which one of the following $*$ is a binary operation ?
KCET - 2009
KCET
Mathematics
Relations and functions
Which one of the following is not true ?
KCET - 2009
KCET
Mathematics
Relations and functions
The maximum value of
$\frac{Log \, x}{x} $
in
$(2, \infty)$
is
KCET - 2008
KCET
Mathematics
Maxima and Minima
If
$Log_{10}7=0.8451$
then the position of the first significant figure of
$7^{-20}$
is
KCET - 2008
KCET
Mathematics
Significant figures
Prev
1
...
20
21
22
23
24
...
29
Next