The intersection point of parabolas $y=x^{2}$ and $x=y^{2}$ is
$y=\left(y^{2}\right)^{2}$$\Rightarrow y=y^{4}$$\Rightarrow y=0, y=1$$\Rightarrow x=0, x=1$
So, the intersection point in $O(0,0)$ and $(1,1)$.
$\therefore$ Required area $=\int_\limits{0}^{1}\left(y_{2}-y_{1}\right) d x$$=\int_\limits{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$$=\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1}=\left[\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1}$$=\left[\frac{2}{3}(1)-\frac{1}{3}(1)+0-0\right]$$=\left[\frac{2}{3}-\frac{1}{3}\right]=\frac{1}{3}$
We know that, if parabolas are $y^{2}=4 a x$ and
$x^{2}=4by$, then area of bounded region is $\frac{4 a \cdot 4 b}{3}.$$\therefore$ Required area $=\frac{1 \times 1}{3}=\frac{1}{3}$