For \( 0 < a < 1 \), the value of the integral \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - 2a \cos x + a^2} \] is:
A differential equation having the formation f(x,y)dy = g(x,y)dx is known to be homogeneous differential equation if the degree of f(x,y) and g(x, y) is entirely same. A function of form F(x,y), written in the formation of kn F(x,y) is called a homogeneous function of degree n, for k≠0. Therefore, f and g are the homogeneous functions of the same degree of x and y. Here, the change of variable y = ux directs to an equation of the form;
dx/x = h(u) du which could be easily desegregated.
To solve a homogeneous differential equation go through the following steps:-
Given the differential equation of the type