The correct option is(B): 25 m/s.
Conserving momentum:
\(m(30\^{i})+m(40\^{i})+2m(\overrightarrow{v})=(\overrightarrow{0})\)
\(⇒(\overrightarrow{v})=-15\^{i}-20\^{i}\)
\(⇒(\overrightarrow{v})=25m/s\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

The velocity with which one object moves with respect to another object is the relative velocity of an object with respect to another. By relative velocity, we can further understand the time rate of change in the relative position of one object with respect to another.
It is generally used to describe the motion of moving boats through water, airplanes in the wind, etc. According to the person as an observer inside the object, we can compute the velocity very easily.
The velocity of the body A – the velocity of the body B = The relative velocity of A with respect to B
V_{AB} = V_{A} – V_{B}
Where,
The relative velocity of the body A with respect to the body B = V_{AB}
The velocity of the body A = V_{A}
The velocity of body B = V_{B}