Question:

limxπ/4(1cosx)2tan2xsin2x is equal to: \lim_{x \to \pi/4} \frac{(1 - \cos x)^2}{\tan^2 x - \sin^2 x} \text{ is equal to:}

Updated On: Mar 30, 2025
  • 0
  • (21)2(\sqrt{2} - 1)^2
  • 1
  • \infty
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


Let x=π/4x = \pi/4, then: cos(π/4)=121cosx=112=212,so: (1cosx)2=(212)2 \cos(\pi/4) = \frac{1}{\sqrt{2}} \Rightarrow 1 - \cos x = 1 - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}},\quad \text{so: } (1 - \cos x)^2 = \left(\frac{\sqrt{2} - 1}{\sqrt{2}}\right)^2 tan2x=1,sin2x=(12)2=12tan2xsin2x=112=12 \tan^2 x = 1,\quad \sin^2 x = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \Rightarrow \tan^2 x - \sin^2 x = 1 - \frac{1}{2} = \frac{1}{2} Limit=(21)2/ 21/2=(21)2 \Rightarrow \text{Limit} = \frac{(\sqrt{2} - 1)^2/\ 2}{1/2} = (\sqrt{2} - 1)^2
Was this answer helpful?
0
0

Top Questions on Limits

View More Questions