>
Guru Gobind Singh Indraprastha University Common Entrance Test
List of top Questions asked in Guru Gobind Singh Indraprastha University Common Entrance Test
Find the component of the vector \((-1, 2, 0)\) perpendicular to the plane of the vectors \(\mathbf{e}_1 = (1, 0, 1)\) and \(\mathbf{e}_2 = (1, 1, 1)\).
IPU CET - 2016
IPU CET
Mathematics
Vectors
If \(i = \sqrt{-1}\), then \[ \lim_{n \to \infty} \frac{(n + 2i)(3 + 7in)}{(2 - i)(6n^2 + 1)} \] is equal to:
IPU CET - 2016
IPU CET
Mathematics
Limits
\[ \lim_{x \to \pi/4} \frac{(1 - \cos x)^2}{\tan^2 x - \sin^2 x} \text{ is equal to:} \]
IPU CET - 2016
IPU CET
Mathematics
Limits
\[ \frac{1}{2 \sin 10^\circ} - 2 \sin 70^\circ \text{ is equal to} \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
What is the number of ordered pairs of real numbers
(a, b)
such that
\[ (a + bi)^{2002} = a - bi \]
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
Given \(\varepsilon = \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right)\), find the value of \[ \prod_{k=0}^{n-1} \left( \varepsilon^2k - 2\varepsilon k \cos \theta + 1 \right) \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
Which of the following complex numbers is conjugate to its square?
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
Find the derivative of
\[ y = (1 - x)^m (1 + x)^n \text{ at } x = 0, \text{ where } m, n>0 \]
IPU CET - 2016
IPU CET
Mathematics
Differentiation
Find the real solution of the system of equations: \[ x^4 + y^4 - x^2 y^2 = 13,\quad x^2 - y^2 + 2xy = 1 \] Satisfying condition: \( xy \geq 0 \)
IPU CET - 2016
IPU CET
Mathematics
Algebra
The straight line \( r = (i - j + k) + \lambda (2i + j - k) \) and the plane \( r \cdot (2i + j - k) = 4 \) are
IPU CET - 2016
IPU CET
Mathematics
3D Geometry
For any two vectors \( \vec{u} \) and \( \vec{v} \), if \( |\vec{u} + \vec{v}| = |\vec{u} - \vec{v}| \) then the angle between them is equal to
IPU CET - 2016
IPU CET
Mathematics
Vectors
For \(x>1\), how many roots/solutions of the following equation exist: \[ \log_2\left( \frac{2}{x} \right)\log^2 x + \log^2 x = 1 \]
IPU CET - 2016
IPU CET
Mathematics
Logarithms
Angles A, B, and C of a triangle \(\Delta ABC\) are in AP and \( b:c = \sqrt{3} : \sqrt{2} \), then angle \( \angle A \) is given by
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
At what point of the curve
\( y^2 = 2x^3 \) is the tangent line perpendicular to the straight line \[ 4x - 3y + 2 = 0? \]
IPU CET - 2016
IPU CET
Mathematics
Tangents and Normals
Choose the most appropriate option. Solve for \(x>0\)
\[ \log_3\left( \frac{3}{x} \right) + \log_3 x = 1 \]
IPU CET - 2016
IPU CET
Mathematics
Logarithms
Let \( a = \cos \theta_1 + i \sin \theta_1 \), \( b = \cos \theta_2 + i \sin \theta_2 \), \( c = \cos \theta_3 + i \sin \theta_3 \) and \( a + b + c = 0 \), then \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = ? \]
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
On the ellipse
\(9x^2 + 25y^2 = 225\), find the point, the distance from which to the focus \(F_2\) is four times the distance to the focus \(F_1\).
IPU CET - 2016
IPU CET
Mathematics
Coordinate Geometry
If the expansion of \(\left(x^2 + \frac{2}{x} \right)^n\) has a term independent of \(x\), then \(n\) is
IPU CET - 2016
IPU CET
Mathematics
Binomial Expansion
A real solution of the equation
\[ \cosh x - 5 \sinh x - 5 = 0 \text{ is} \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
\[ \int_{-1}^1 \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx \text{ is equal to} \]
IPU CET - 2016
IPU CET
Mathematics
Integration
Tangents are drawn from the origin to the curve \(y = \sin x\). Then, the point of contact lie on the curve:
IPU CET - 2016
IPU CET
Mathematics
Derivatives
What is the value of
\(\tan \left(\frac{\pi}{12}\right)?\)
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Identities
If \(P(x)\) is a polynomial such that \[ P(x^2 + 1) = \{P(x)\}^2 + 1 \] then \(P'(0)\) is equal to
IPU CET - 2016
IPU CET
Mathematics
Polynomials
If \(y^{\frac{1}{m}} + x^{\frac{1}{m}} = 2x\) then
IPU CET - 2016
IPU CET
Mathematics
Differential Equations
\[ \int_0^1 x e^{2x} dx \text{ is equal to} \]
IPU CET - 2016
IPU CET
Mathematics
Integration
Prev
1
...
14
15
16
17
18
...
20
Next