The given equation is:
\[
x^2 + y^2 - 2\lambda x + 2\lambda y + 14 = 0
\]
Rewriting this in standard form:
\[
(x^2 - 2\lambda x) + (y^2 + 2\lambda y) = -14
\]
Complete the square for both \(x\) and \(y\):
\[
(x^2 - 2\lambda x + \lambda^2) + (y^2 + 2\lambda y + \lambda^2) = -14 + 2\lambda^2
\]
\[
(x - \lambda)^2 + (y + \lambda)^2 = 2\lambda^2 - 14
\]
For this equation to represent a circle, the radius must be non-negative:
\[
2\lambda^2 - 14 \geq 0 \quad \Rightarrow \quad \lambda^2 \geq 7
\]
\[
|\lambda| \geq \sqrt{7}
\]
The radius is given by:
\[
r = \sqrt{2\lambda^2 - 14}
\]
To ensure the radius does not exceed 6:
\[
\sqrt{2\lambda^2 - 14} \leq 6 \quad \Rightarrow \quad 2\lambda^2 - 14 \leq 36
\]
\[
2\lambda^2 \leq 50 \quad \Rightarrow \quad \lambda^2 \leq 25
\]
Thus:
\[
\sqrt{7} \leq |\lambda| \leq 5
\]
The integer values of \( \lambda \) are \( \lambda = -5, -4, -3, -2, -1, 1, 2, 3, 4, 5 \), so there are 11 integer values of \( \lambda \).