If \(\; f(x)=\begin{cases} x\sin\!\left(\tfrac{1}{x}\right), & x\neq 0 \\[6pt] 0, & x=0 \end{cases}, \; \text{then } f(x) \text{ is}\)
If \( x^2 = -16y \) is an equation of a parabola, then:
(A) Directrix is \( y = 4 \) (B) Directrix is \( x = 4 \) (C) Co-ordinates of focus are \( (0, -4) \) (D) Co-ordinates of focus are \( (-4, 0) \) (E) Length of latus rectum is 16
The points \( (K, 2 - 2K), (-K + 1, 2K) \) and \( (-4 - K, 6 - 2K) \) are collinear if:
(A) \( K = \frac{1}{2} \) (B) \( K = -\frac{1}{2} \) (C) \( K = \frac{3}{2} \) (D) \( K = -1 \) (E) \( K = 1 \)
If \( x = \left( 2 + \sqrt{3} \right)^3 + \left( 2 - \sqrt{3} \right)^{-3} \) and \( x^3 - 3x + k = 0 \), then the value of \( k \) is:
Which figure comes next in the given series below?