>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
The differential equation having \( y = (a + b)e^{cx+d} \) as its general solution, where \( a, b, c, d \) are arbitrary constants, is
AP EAPCET - 2023
AP EAPCET
Mathematics
Differential Equations
If \( u(n) = \int_0^{\frac{\pi}{2}} (1 + \sin t)^n \sin 2t \, dt,\; n \in \mathbb{N} \), then \( u(4) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If a curve passes through (1, 2) and has the slope of its tangent \(1 - \frac{1}{x^2}\) at a point \((x, y)\), then the equation of that curve is
AP EAPCET - 2023
AP EAPCET
Mathematics
Differential Equations
If \( \displaystyle \int_{3}^{b} \frac{x - 1}{2x - x^2} \, dx = \frac{1}{2} \), then \( (b - 1)^2 = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
\(\displaystyle \int \frac{\sqrt{x^4 + x^{-4} + 2}}{x^3} dx =\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
The area bounded by the curve \( x = \log(|y|) \), the lines \( x = -1 \) and \( x = 0 \) is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
\(\displaystyle \int_{0}^{\pi} \frac{\cos x}{\sqrt{1 - \sin^2 x}} \, dx =\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
Assertion (A): \(\displaystyle \int_0^{\frac{\pi}{2}} (\sin^6 x + \cos^6 x)\, dx\) lies in the interval \(\left(\frac{\pi}{8}, \frac{\pi}{2}\right)\) Reason (R): \(\sin^6 x + \cos^6 x\) is a periodic function with period \(\dfrac{\pi}{2}\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If \(\displaystyle \int \frac{3x+2}{4x^2+4x+5} \, dx = A \log(4x^2+4x+5) + B \tan^{-1} \left(x + \frac{1}{2}\right) + C\), then \((A, B) =\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
\(\displaystyle \int e^x \left( \log x + \frac{1}{x^2} \right) dx =\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
The sum of the global minimum and global maximum values of the function \[ f(x) = \frac{4}{3}x^3 - 4x \quad \text{in } [0, 2] \text{ is} \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Maxima and Minima
\(f(x)\) is a continuous function on \(\mathbb{R}\) and \(y = f(x)\) is a curve. If \((\alpha, \beta)\) is a point such that \(\beta = f(\alpha)\) and \(p\alpha + m\beta + n = 0\ (p \ne 0, m \ne 0)\), then which one of the following is True?
AP EAPCET - 2023
AP EAPCET
Mathematics
Functions
If \(u = \sin\left(\frac{x}{y}\right),\ x = e^t,\ y = t^2\), then \[ t^6 \left(\frac{du}{dt}\right)^2 \div e^{2t}(t - 2)^2 = \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
Let \(A(1,15),\ B(3,-12),\ C(6,12)\) be three consecutive turning points of a continuous curve \(y = f(x)\). If \(f(x) = 0\) only for \(x = \alpha\) and \(x = \beta\), then \[ |\beta - \alpha| < ? \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Continuity
If \(g(x)\) is the inverse of the function \(f(x)\) and \(f'(x) = \dfrac{1}{h(x)}\), then what is the value of \(g'(x)\)?
AP EAPCET - 2023
AP EAPCET
Mathematics
Differentiation
Evaluate the integral \[ \int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sqrt{x} \left( \sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x} \right)} \, dx \]
AP EAPCET - 2023
AP EAPCET
Mathematics
Integration
If the slope of the tangent on a curve at any point \((x, y)\) is equal to \[ \frac{y^2 - x^2}{2xy} \] then the equation of the normal at the point \(\left(1, \frac{\sqrt{3}}{2}\right)\) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Tangents and Normals
Let \([t]\) represent the greatest integer not more than \(t\). Then the number of discontinuous points of \(f(x) = \left[\frac{1}{x}\right]\) in \((0, \infty)\) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Discontinuity of a function
Let the transverse axis of a hyperbola \( H \) be parallel to the X-axis and \( x^2 + y^2 - 2x - 4y + 3 = 0 \) be the equation of the auxiliary circle of \( H \). If the asymptotes of \( H \) are at right angles, then the equation of the hyperbola is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
If the equation of the tangent drawn at \((h, k)\) to the hyperbola \(\frac{(x - 1)^2}{1} - \frac{(y - 2)^2}{2} = 1\) is \(x = 2\), then \(h + k =\)
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
Assertion (A):
Every rational function is continuous at every real number \(x\) at which it is defined.
Reason (R):
Every rational function is a quotient of two polynomials.
AP EAPCET - 2023
AP EAPCET
Mathematics
Functions
If a function defined by \( f(x) = \frac{(3^x - 1)^2}{\sin x \cdot \log(1+x)}, x \neq 0 \) is continuous at \(x = 0\), then \(f(0) =\) ?
AP EAPCET - 2023
AP EAPCET
Mathematics
Limit and Continuity
If \(x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right) = k\), then \(\left(\frac{dy}{dx}\right)_{(1,1)} =\) ?
AP EAPCET - 2023
AP EAPCET
Mathematics
Differentiation
If a focal chord of the ellipse \(\frac{x^2}{25} + \frac{y^2}{16} = 1\) meets its minor axis at the point \((0, 3)\), then the perpendicular distance from the centre of the ellipse to this focal chord is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
If the mid-point of the chord intercepted by the circle \(x^2 + y^2 - 8x + 10y + 5 = 0\) on the line \(2x + y + 2 = 0\) is \((h, k)\), then \(k + 4h =\) ?
AP EAPCET - 2023
AP EAPCET
Mathematics
Coordinate Geometry
Prev
1
...
17
18
19
20
21
...
41
Next