Step 1: Combine the terms in the expression.
\[ \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{c + a + b}{abc} \]
Step 2: Relate the numerator and denominator to known triangle formulas.
The numerator \( a+b+c = 2s \), where \( s \) is the semi-perimeter.
The denominator \( abc \).
We know the area of the triangle \( \Delta = \frac{abc}{4R} \), so \( abc = 4R\Delta \).
Also, the inradius \( r = \frac{\Delta}{s} \), so \( \Delta = rs \).
Step 3: Substitute these into the expression.
\[ \frac{2s}{abc} = \frac{2s}{4R\Delta} \]
Substitute \( \Delta = rs \):
\[ = \frac{2s}{4R(rs)} \]
Step 4: Simplify the expression.
Assuming \( s \ne 0 \) (which is true for a triangle), we can cancel \( s \):
\[ = \frac{2}{4Rr} = \frac{1}{2Rr} \]
Step 5: Substitute the given values of \( r \) and \( R \).
Given \( r = 3 \) and \( R = 5 \).
\[ \frac{1}{2Rr} = \frac{1}{2 \cdot 5 \cdot 3} = \frac{1}{30} \]
This matches option (1).