Initial compositions:
\[
A: 4W, 1B; B: 3W, 2B; C: 2W, 3B
\]
Step 1: Transfer one ball from A to B.
\[
P(W \text{ from A}) = \frac{4}{5}, P(B \text{ from A}) = \frac{1}{5}
\]
After transfer:
\[
B' = \begin{cases}
4W, 2B & \text{if W transferred}
3W, 3B & \text{if B transferred}
\end{cases}
\]
Step 2: Transfer one ball from B' to C.
\[
\begin{cases}
P(W \text{ from } B') = \frac{4}{6}, P(B \text{ from } B') = \frac{2}{6} & \text{if } B' = 4W,2B
P(W \text{ from } B'') = \frac{3}{6}, P(B \text{ from } B'') = \frac{3}{6} & \text{if } B'' = 3W,3B
\end{cases}
\]
Step 3: Final composition of C and probability of drawing black:
\[
\begin{aligned}
& P(\text{Black} | W \to B, W \to C) = \frac{3}{6} = \frac{1}{2},
P(\text{Black} | W \to B, B \to C) = \frac{4}{6} = \frac{2}{3},
& P(\text{Black} | B \to B, W \to C) = \frac{3}{6} = \frac{1}{2},
P(\text{Black} | B \to B, B \to C) = \frac{4}{6} = \frac{2}{3}.
\end{aligned}
\]
Step 4: Total probability using law of total probability:
\[
\begin{aligned}
P(\text{Black}) &= \frac{4}{5} \times \frac{4}{6} \times \frac{1}{2} + \frac{4}{5} \times \frac{2}{6} \times \frac{2}{3}
& + \frac{1}{5} \times \frac{3}{6} \times \frac{1}{2} + \frac{1}{5} \times \frac{3}{6} \times \frac{2}{3}
&= \frac{4}{15} + \frac{8}{45} + \frac{1}{20} + \frac{1}{15} = \frac{101}{180}.
\end{aligned}
\]
This matches option (3).