For the parabola \(y^2=4ax\):
Focus is \( S=(a,0) \).
Equation of directrix is \( x = -a \) or \( x+a=0 \).
The perpendicular distance from the focus \( (a,0) \) to the directrix \( x+a=0 \) is:
\[ \frac{|a+a|}{\sqrt{1^2+0^2}} = \frac{|2a|}{1} = |2a| \]
Given this distance is \( \frac{3}{2} \).
So, \( |2a| = \frac{3}{2} \).
This means \( 2a = \frac{3}{2} \) or \( 2a = -\frac{3}{2} \).
Typically, for \(y^2=4ax\), \(a\) is considered positive, so \( 2a = \frac{3}{2} \implies a = \frac{3}{4} \).
The equation of the normal to \(y^2=4ax\) at a point \( (x_1, y_1) \) is \( y-y_1 = -\frac{y_1}{2a}(x-x_1) \).
The point is \( (4a, -4a) \).
So \( x_1 = 4a, y_1 = -4a \).
Substitute these into the normal equation:
\[ y - (-4a) = -\frac{-4a}{2a}(x - 4a) \]
\[ y + 4a = -(-2)(x - 4a) \]
\[ y + 4a = 2(x - 4a) \]
\[ y + 4a = 2x - 8a \]
\[ 2x - y - 12a = 0 \]
Substitute \( a = 3/4 \):
\[ 2x - y - 12\left(\frac{3}{4}\right) = 0 \]
\[ 2x - y - 3 \times 3 = 0 \]
\[ 2x - y - 9 = 0 \]
\[ 2x - y = 9 \]
This matches option (2).