The transformed equation of \( 3x^2 - 4xy = r^2 \) when the coordinate axes are rotated about the origin through an angle of \( \tan^{-1}(2) \) in positive direction is
Show Hint
Rotation of axes formulas: \( x = X\cos\theta - Y\sin\theta \), \( y = X\sin\theta + Y\cos\theta \).
If \( \tan\theta = m \), determine \( \sin\theta \) and \( \cos\theta \) from a right triangle.
The angle \( \theta \) that removes the \(xy\) term from \( Ax^2+2Hxy+By^2+\dots=0 \) satisfies \( \tan 2\theta = \frac{2H}{A-B} \). Here, \( \tan\theta = 2 \implies \tan 2\theta = \frac{2(2)}{1-2^2} = \frac{4}{-3} \). For the given equation \(3x^2-4xy=r^2\), \(A=3, 2H=-4, B=0\). So \( \frac{2H}{A-B} = \frac{-4}{3-0} = -4/3 \). This confirms the angle eliminates the \(XY\) term.