For a homogeneous differential equation \( \frac{dy}{dx} = F(\frac{y}{x}) \):
1. Substitute \( y=vx \), so \( \frac{dy}{dx} = v + x\frac{dv}{dx} \).
2. The equation becomes separable in \(v\) and \(x\): \( x\frac{dv}{dx} = F(v)-v \).
3. Integrate \( \int \frac{dv}{F(v)-v} = \int \frac{dx}{x} \).
4. Substitute back \( v=y/x \).
Remember \( \int \frac{1}{1+u^2}du = \tan^{-1}u \) and \( \int \frac{u}{1+u^2}du = \frac{1}{2}\log(1+u^2) \).
Properties of logarithm: \( \frac{1}{2}\log A = \log\sqrt{A} \), \( \log A + \log B = \log(AB) \).