Let \( I = \int \frac{\cos^3 x}{\sin^2 x + \sin^4 x} dx = \int \frac{\cos^3 x}{\sin^2 x (1 + \sin^2 x)} dx \).
\[ I = \int \frac{\cos^2 x \cdot \cos x}{\sin^2 x (1 + \sin^2 x)} dx = \int \frac{(1-\sin^2 x)\cos x}{\sin^2 x (1 + \sin^2 x)} dx \]
Let \( u = \sin x \).
Then \( du = \cos x dx \).
\[ I = \int \frac{1-u^2}{u^2(1+u^2)} du \]
Use partial fractions for \( \frac{1-u^2}{u^2(1+u^2)} \).
Let \( v = u^2 \).
Then \( \frac{1-v}{v(1+v)} = \frac{A}{v} + \frac{B}{1+v} \).
\( 1-v = A(1+v) + Bv \).
If \( v=0 \), \( 1 = A(1) \implies A=1 \).
If \( v=-1 \), \( 1-(-1) = B(-1) \implies 2 = -B \implies B=-2 \).
So, \( \frac{1-u^2}{u^2(1+u^2)} = \frac{1}{u^2} - \frac{2}{1+u^2} \).
\[ I = \int \left( \frac{1}{u^2} - \frac{2}{1+u^2} \right) du = \int u^{-2} du - 2 \int \frac{1}{1+u^2} du \]
\[ = \frac{u^{-1}}{-1} - 2\tan^{-1}u + C_0 = -\frac{1}{u} - 2\tan^{-1}u + C_0 \]
Substitute back \( u = \sin x \):
\[ I = -\frac{1}{\sin x} - 2\tan^{-1}(\sin x) + C_0 \]
\[ I = -\operatorname{cosec} x - 2\tan^{-1}(\sin x) + C_0 \]
Given \( I = c - \operatorname{cosec} x - f(x) \).
Comparing, \( c = C_0 \) and \( f(x) = 2\tan^{-1}(\sin x) \).
We need to find \( f(\pi/2) \).
\[ f(\pi/2) = 2\tan^{-1}(\sin(\pi/2)) = 2\tan^{-1}(1) \]
Since \( \tan^{-1}(1) = \pi/4 \).
\[ f(\pi/2) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \]
This matches option (3).