Question:

If \( \int \frac{\cos^3 x}{\sin^2 x + \sin^4 x} dx = c - \operatorname{cosec} x - f(x) \), then \( f\left(\frac{\pi}{2}\right) = \)

Show Hint

1. Simplify the integrand using trigonometric identities (\( \cos^2x = 1-\sin^2x \)). 2. Use substitution (e.g., \(u=\sin x\)). 3. If the resulting rational function in \(u\) is complex, use partial fraction decomposition. 4. Integrate term by term. 5. Compare the result with the given form to identify \(f(x)\). Remember \( \tan^{-1}(1) = \pi/4 \).
Updated On: Jun 5, 2025
  • 1
  • 0
  • \( \frac{\pi}{2} \)
  • \( \pi \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let \( I = \int \frac{\cos^3 x}{\sin^2 x + \sin^4 x} dx = \int \frac{\cos^3 x}{\sin^2 x (1 + \sin^2 x)} dx \).
\[ I = \int \frac{\cos^2 x \cdot \cos x}{\sin^2 x (1 + \sin^2 x)} dx = \int \frac{(1-\sin^2 x)\cos x}{\sin^2 x (1 + \sin^2 x)} dx \] Let \( u = \sin x \).
Then \( du = \cos x dx \).
\[ I = \int \frac{1-u^2}{u^2(1+u^2)} du \] Use partial fractions for \( \frac{1-u^2}{u^2(1+u^2)} \).
Let \( v = u^2 \).
Then \( \frac{1-v}{v(1+v)} = \frac{A}{v} + \frac{B}{1+v} \).
\( 1-v = A(1+v) + Bv \).
If \( v=0 \), \( 1 = A(1) \implies A=1 \).
If \( v=-1 \), \( 1-(-1) = B(-1) \implies 2 = -B \implies B=-2 \).
So, \( \frac{1-u^2}{u^2(1+u^2)} = \frac{1}{u^2} - \frac{2}{1+u^2} \).
\[ I = \int \left( \frac{1}{u^2} - \frac{2}{1+u^2} \right) du = \int u^{-2} du - 2 \int \frac{1}{1+u^2} du \] \[ = \frac{u^{-1}}{-1} - 2\tan^{-1}u + C_0 = -\frac{1}{u} - 2\tan^{-1}u + C_0 \] Substitute back \( u = \sin x \): \[ I = -\frac{1}{\sin x} - 2\tan^{-1}(\sin x) + C_0 \] \[ I = -\operatorname{cosec} x - 2\tan^{-1}(\sin x) + C_0 \] Given \( I = c - \operatorname{cosec} x - f(x) \).
Comparing, \( c = C_0 \) and \( f(x) = 2\tan^{-1}(\sin x) \).
We need to find \( f(\pi/2) \).
\[ f(\pi/2) = 2\tan^{-1}(\sin(\pi/2)) = 2\tan^{-1}(1) \] Since \( \tan^{-1}(1) = \pi/4 \).
\[ f(\pi/2) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] This matches option (3).
Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification